Automated Structured Radiology Report Generation
- URL: http://arxiv.org/abs/2505.24223v2
- Date: Mon, 02 Jun 2025 07:21:17 GMT
- Title: Automated Structured Radiology Report Generation
- Authors: Jean-Benoit Delbrouck, Justin Xu, Johannes Moll, Alois Thomas, Zhihong Chen, Sophie Ostmeier, Asfandyar Azhar, Kelvin Zhenghao Li, Andrew Johnston, Christian Bluethgen, Eduardo Reis, Mohamed Muneer, Maya Varma, Curtis Langlotz,
- Abstract summary: We introduce Structured Radiology Report Generation (SRRG), a new task that reformulates free-text radiology reports into a standardized format.<n>We create a novel dataset by restructuring reports using large language models (LLMs) following strict structured reporting desiderata.<n>We also introduce SRR-BERT, a fine-grained disease classification model trained on 55 labels, enabling more precise and clinically informed evaluation of structured reports.
- Score: 11.965406008391371
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automated radiology report generation from chest X-ray (CXR) images has the potential to improve clinical efficiency and reduce radiologists' workload. However, most datasets, including the publicly available MIMIC-CXR and CheXpert Plus, consist entirely of free-form reports, which are inherently variable and unstructured. This variability poses challenges for both generation and evaluation: existing models struggle to produce consistent, clinically meaningful reports, and standard evaluation metrics fail to capture the nuances of radiological interpretation. To address this, we introduce Structured Radiology Report Generation (SRRG), a new task that reformulates free-text radiology reports into a standardized format, ensuring clarity, consistency, and structured clinical reporting. We create a novel dataset by restructuring reports using large language models (LLMs) following strict structured reporting desiderata. Additionally, we introduce SRR-BERT, a fine-grained disease classification model trained on 55 labels, enabling more precise and clinically informed evaluation of structured reports. To assess report quality, we propose F1-SRR-BERT, a metric that leverages SRR-BERT's hierarchical disease taxonomy to bridge the gap between free-text variability and structured clinical reporting. We validate our dataset through a reader study conducted by five board-certified radiologists and extensive benchmarking experiments.
Related papers
- S-RRG-Bench: Structured Radiology Report Generation with Fine-Grained Evaluation Framework [39.542375803362965]
Radiology report generation (RRG) for diagnostic images, such as chest X-rays, plays a pivotal role in both clinical practice and AI.<n>Traditional free-text reports suffer from redundancy and inconsistent language, complicating the extraction of critical clinical details.<n>We present a novel approach to S-RRG that includes dataset construction, model training, and the introduction of a new evaluation framework.
arXiv Detail & Related papers (2025-08-04T05:49:41Z) - CLEAR: A Clinically-Grounded Tabular Framework for Radiology Report Evaluation [19.416198842242856]
We introduce a Clinically-grounded framework with Expert-curated labels and Attribute-level comparison for Radiology report evaluation (CLEAR)<n>CLEAR examines whether a report can accurately identify the presence or absence of medical conditions.<n>To measure the clinical alignment of CLEAR, we collaborate with five board-certified radiologists to develop CLEAR-Bench, a dataset of 100 chest X-ray reports from MIMIC-CXR.
arXiv Detail & Related papers (2025-05-22T07:32:12Z) - Improving Radiology Report Conciseness and Structure via Local Large Language Models [0.0]
We aim to enhance radiology reporting by improving the conciseness and structured organization of findings.
This structured approach allows physicians to locate relevant information quickly, increasing the report's utility.
We utilize Large Language Models (LLMs) such as Mixtral, Mistral, and Llama to generate concise, well-structured reports.
arXiv Detail & Related papers (2024-11-06T19:00:57Z) - ReXErr: Synthesizing Clinically Meaningful Errors in Diagnostic Radiology Reports [1.9106067578277455]
We introduce ReXErr, a methodology that leverages Large Language Models to generate representative errors within chest X-ray reports.
We developed error categories that capture common mistakes in both human and AI-generated reports.
Our approach uses a novel sampling scheme to inject diverse errors while maintaining clinical plausibility.
arXiv Detail & Related papers (2024-09-17T01:42:39Z) - RaTEScore: A Metric for Radiology Report Generation [59.37561810438641]
This paper introduces a novel, entity-aware metric, as Radiological Report (Text) Evaluation (RaTEScore)
RaTEScore emphasizes crucial medical entities such as diagnostic outcomes and anatomical details, and is robust against complex medical synonyms and sensitive to negation expressions.
Our evaluations demonstrate that RaTEScore aligns more closely with human preference than existing metrics, validated both on established public benchmarks and our newly proposed RaTE-Eval benchmark.
arXiv Detail & Related papers (2024-06-24T17:49:28Z) - Structural Entities Extraction and Patient Indications Incorporation for Chest X-ray Report Generation [10.46031380503486]
We introduce a novel method, textbfStructural textbfEntities extraction and patient indications textbfIncorporation (SEI) for chest X-ray report generation.
We employ a structural entities extraction (SEE) approach to eliminate presentation-style vocabulary in reports.
We propose a cross-modal fusion network to integrate information from X-ray images, similar historical cases, and patient-specific indications.
arXiv Detail & Related papers (2024-05-23T01:29:47Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuer is a tailored model for automatic radiology report generation that learns generalizable representations.
The clinical dataset utilized in this study encompasses a remarkable total of textbf332,673 observations.
ChatRadio-Valuer consistently outperforms state-of-the-art models, especially ChatGPT (GPT-3.5-Turbo) and GPT-4 et al.
arXiv Detail & Related papers (2023-10-08T17:23:17Z) - Rad-ReStruct: A Novel VQA Benchmark and Method for Structured Radiology
Reporting [45.76458992133422]
We introduce Rad-ReStruct, a new benchmark dataset that provides fine-grained, hierarchically ordered annotations in the form of structured reports for X-Ray images.
We propose hi-VQA, a novel method that considers prior context in the form of previously asked questions and answers for populating a structured radiology report.
Our experiments show that hi-VQA achieves competitive performance to the state-of-the-art on the medical VQA benchmark VQARad while performing best among methods without domain-specific vision-language pretraining.
arXiv Detail & Related papers (2023-07-11T19:47:05Z) - FlexR: Few-shot Classification with Language Embeddings for Structured
Reporting of Chest X-rays [37.15474283789249]
We propose a method to predict clinical findings defined by sentences in structured reporting templates.
The approach involves training a contrastive language-image model using chest X-rays and related free-text radiological reports.
Results show that even with limited image-level annotations for training, the method can accomplish the structured reporting tasks of severity assessment of cardiomegaly and localizing pathologies in chest X-rays.
arXiv Detail & Related papers (2022-03-29T16:31:39Z) - CLARA: Clinical Report Auto-completion [56.206459591367405]
CLinicit Al it Report it Auto-completion (CLARA) is an interactive method that generates reports in a sentence by sentence fashion based on doctors' anchor words and partially completed sentences.
In our experimental evaluation, CLARA achieved 0.393 CIDEr and 0.248 BLEU-4 on X-ray reports and 0.482 CIDEr and 0.491 BLEU-4 for EEG reports for sentence-level generation.
arXiv Detail & Related papers (2020-02-26T18:45:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.