Mind the Quote: Enabling Quotation-Aware Dialogue in LLMs via Plug-and-Play Modules
- URL: http://arxiv.org/abs/2505.24292v1
- Date: Fri, 30 May 2025 07:06:11 GMT
- Title: Mind the Quote: Enabling Quotation-Aware Dialogue in LLMs via Plug-and-Play Modules
- Authors: Yueqi Zhang, Peiwen Yuan, Shaoxiong Feng, Yiwei Li, Xinglin Wang, Jiayi Shi, Chuyi Tan, Boyuan Pan, Yao Hu, Kan Li,
- Abstract summary: We formalise the challenge as span-conditioned generation, decomposing each turn into the dialogue history.<n>We introduce a quotation-centric data pipeline that automatically synthesises task-specific dialogues.<n>We propose QuAda, a lightweight training-based method that attaches two bottleneck projections to every attention head.
- Score: 19.673388630963807
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human-AI conversation frequently relies on quoting earlier text-"check it with the formula I just highlighted"-yet today's large language models (LLMs) lack an explicit mechanism for locating and exploiting such spans. We formalise the challenge as span-conditioned generation, decomposing each turn into the dialogue history, a set of token-offset quotation spans, and an intent utterance. Building on this abstraction, we introduce a quotation-centric data pipeline that automatically synthesises task-specific dialogues, verifies answer correctness through multi-stage consistency checks, and yields both a heterogeneous training corpus and the first benchmark covering five representative scenarios. To meet the benchmark's zero-overhead and parameter-efficiency requirements, we propose QuAda, a lightweight training-based method that attaches two bottleneck projections to every attention head, dynamically amplifying or suppressing attention to quoted spans at inference time while leaving the prompt unchanged and updating < 2.8% of backbone weights. Experiments across models show that QuAda is suitable for all scenarios and generalises to unseen topics, offering an effective, plug-and-play solution for quotation-aware dialogue.
Related papers
- Bottom-Up Synthesis of Knowledge-Grounded Task-Oriented Dialogues with Iteratively Self-Refined Prompts [19.73376945990922]
We introduce a bottom-up conversation synthesis approach, where QA pairs are generated first and then combined into a coherent dialogue.<n>This structure allows the use of non-local models in stages that do not involve proprietary knowledge.<n>Both human and automated evaluations demonstrate that our approach produces more realistic and higher-quality dialogues.
arXiv Detail & Related papers (2025-04-19T18:25:53Z) - A Multi-view Discourse Framework for Integrating Semantic and Syntactic Features in Dialog Agents [0.0]
Multiturn dialogue models aim to generate human-like responses by leveraging conversational context.<n>Existing methods often neglect the interactions between these utterances or treat all of them as equally significant.<n>This paper introduces a discourse-aware framework for response selection in retrieval-based dialogue systems.
arXiv Detail & Related papers (2025-04-12T04:22:18Z) - Full-Duplex-Bench: A Benchmark to Evaluate Full-duplex Spoken Dialogue Models on Turn-taking Capabilities [93.09944267871163]
FullDuplexBench is a benchmark that systematically evaluates key conversational behaviors.<n>We aim to advance spoken dialogue modeling and encourage the development of more interactive and natural dialogue systems.
arXiv Detail & Related papers (2025-03-06T18:59:16Z) - OmniFlatten: An End-to-end GPT Model for Seamless Voice Conversation [53.7173034249361]
End-to-end GPT-based model OmniFlatten capable of effectively modeling complex behaviors inherent natural conversations with low latency.<n>Our approach offers a simple modeling technique and a promising research direction for developing efficient and natural end-to-end full- spoken dialogue systems.
arXiv Detail & Related papers (2024-10-23T11:58:58Z) - Interactive Text-to-Image Retrieval with Large Language Models: A Plug-and-Play Approach [33.231639257323536]
In this paper, we address the issue of dialogue-form context query within the interactive text-to-image retrieval task.
By reformulating the dialogue-form context, we eliminate the necessity of fine-tuning a retrieval model on existing visual dialogue data.
We construct the LLM questioner to generate non-redundant questions about the attributes of the target image.
arXiv Detail & Related papers (2024-06-05T16:09:01Z) - SSP: Self-Supervised Post-training for Conversational Search [63.28684982954115]
We propose fullmodel (model) which is a new post-training paradigm with three self-supervised tasks to efficiently initialize the conversational search model.
To verify the effectiveness of our proposed method, we apply the conversational encoder post-trained by model on the conversational search task using two benchmark datasets: CAsT-19 and CAsT-20.
arXiv Detail & Related papers (2023-07-02T13:36:36Z) - Cue-CoT: Chain-of-thought Prompting for Responding to In-depth Dialogue
Questions with LLMs [59.74002011562726]
We propose a novel linguistic cue-based chain-of-thoughts (textitCue-CoT) to provide a more personalized and engaging response.
We build a benchmark with in-depth dialogue questions, consisting of 6 datasets in both Chinese and English.
Empirical results demonstrate our proposed textitCue-CoT method outperforms standard prompting methods in terms of both textithelpfulness and textitacceptability on all datasets.
arXiv Detail & Related papers (2023-05-19T16:27:43Z) - DIONYSUS: A Pre-trained Model for Low-Resource Dialogue Summarization [127.714919036388]
DIONYSUS is a pre-trained encoder-decoder model for summarizing dialogues in any new domain.
Our experiments show that DIONYSUS outperforms existing methods on six datasets.
arXiv Detail & Related papers (2022-12-20T06:21:21Z) - Unsupervised Abstractive Dialogue Summarization for Tete-a-Tetes [49.901984490961624]
We propose the first unsupervised abstractive dialogue summarization model for tete-a-tetes (SuTaT)
SuTaT consists of a conditional generative module and two unsupervised summarization modules.
Experimental results show that SuTaT is superior on unsupervised dialogue summarization for both automatic and human evaluations.
arXiv Detail & Related papers (2020-09-15T03:27:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.