Binary Cumulative Encoding meets Time Series Forecasting
- URL: http://arxiv.org/abs/2505.24595v2
- Date: Tue, 03 Jun 2025 11:11:30 GMT
- Title: Binary Cumulative Encoding meets Time Series Forecasting
- Authors: Andrei Chernov, Vitaliy Pozdnyakov, Ilya Makarov,
- Abstract summary: We introduce binary cumulative encoding (BCE) that represents scalar targets into monotonic binary vectors.<n>BCE implicitly preserves order and magnitude information, allowing the model to learn distance-aware representations while still operating within a classification framework.<n>We show that our approach outperforms widely used methods in both point and probabilistic forecasting, while requiring fewer parameters and enabling faster training.
- Score: 0.11704154007740832
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent studies in time series forecasting have explored formulating regression via classification task. By discretizing the continuous target space into bins and predicting over a fixed set of classes, these approaches benefit from stable training, robust uncertainty modeling, and compatibility with modern deep learning architectures. However, most existing methods rely on one-hot encoding that ignores the inherent ordinal structure of the underlying values. As a result, they fail to provide information about the relative distance between predicted and true values during training. In this paper, we propose to address this limitation by introducing binary cumulative encoding (BCE), that represents scalar targets into monotonic binary vectors. This encoding implicitly preserves order and magnitude information, allowing the model to learn distance-aware representations while still operating within a classification framework. We propose a convolutional neural network architecture specifically designed for BCE, incorporating residual and dilated convolutions to enable fast and expressive temporal modeling. Through extensive experiments on benchmark forecasting datasets, we show that our approach outperforms widely used methods in both point and probabilistic forecasting, while requiring fewer parameters and enabling faster training.
Related papers
- Bridging Neural Networks and Dynamic Time Warping for Adaptive Time Series Classification [2.443957114877221]
We develop a versatile model that adapts to cold-start conditions and becomes trainable with labeled data.<n>As a neural network, it becomes trainable when sufficient labeled data is available, while still retaining DTW's inherent interpretability.
arXiv Detail & Related papers (2025-07-13T23:15:21Z) - Enhancing Foundation Models for Time Series Forecasting via Wavelet-based Tokenization [74.3339999119713]
We develop a wavelet-based tokenizer that allows models to learn complex representations directly in the space of time-localized frequencies.<n>Our method first scales and decomposes the input time series, then thresholds and quantizes the wavelet coefficients, and finally pre-trains an autoregressive model to forecast coefficients for the forecast horizon.
arXiv Detail & Related papers (2024-12-06T18:22:59Z) - OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
We present a framework to simultaneously predict occupied locations and classes using a set of learnable queries.
OPUS incorporates a suite of non-trivial strategies to enhance model performance.
Our lightest model achieves superior RayIoU on the Occ3D-nuScenes dataset at near 2x FPS, while our heaviest model surpasses previous best results by 6.1 RayIoU.
arXiv Detail & Related papers (2024-09-14T07:44:22Z) - Time Elastic Neural Networks [2.1756081703276]
We introduce and detail an atypical neural network architecture, called time elastic neural network (teNN)
The novelty compared to classical neural network architecture is that it explicitly incorporates time warping ability.
We demonstrate that, during the training process, the teNN succeeds in reducing the number of neurons required within each cell.
arXiv Detail & Related papers (2024-05-27T09:01:30Z) - Towards Continual Learning Desiderata via HSIC-Bottleneck
Orthogonalization and Equiangular Embedding [55.107555305760954]
We propose a conceptually simple yet effective method that attributes forgetting to layer-wise parameter overwriting and the resulting decision boundary distortion.
Our method achieves competitive accuracy performance, even with absolute superiority of zero exemplar buffer and 1.02x the base model.
arXiv Detail & Related papers (2024-01-17T09:01:29Z) - Skeleton2vec: A Self-supervised Learning Framework with Contextualized
Target Representations for Skeleton Sequence [56.092059713922744]
We show that using high-level contextualized features as prediction targets can achieve superior performance.
Specifically, we propose Skeleton2vec, a simple and efficient self-supervised 3D action representation learning framework.
Our proposed Skeleton2vec outperforms previous methods and achieves state-of-the-art results.
arXiv Detail & Related papers (2024-01-01T12:08:35Z) - Deep Ensembles Meets Quantile Regression: Uncertainty-aware Imputation for Time Series [45.76310830281876]
We propose Quantile Sub-Ensembles, a novel method to estimate uncertainty with ensemble of quantile-regression-based task networks.
Our method not only produces accurate imputations that is robust to high missing rates, but also is computationally efficient due to the fast training of its non-generative model.
arXiv Detail & Related papers (2023-12-03T05:52:30Z) - Towards Anytime Classification in Early-Exit Architectures by Enforcing
Conditional Monotonicity [5.425028186820756]
Anytime algorithms are well-suited to environments in which computational budgets are dynamic.
We show that current early-exit networks are not directly applicable to anytime settings.
We propose an elegant post-hoc modification, based on the Product-of-Experts, that encourages an early-exit network to become gradually confident.
arXiv Detail & Related papers (2023-06-05T07:38:13Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
This paper focuses on the fine-tuning of an adversarially pre-trained model in various classification tasks.
We propose a novel statistics-based approach, Two-WIng NormliSation (TWINS) fine-tuning framework.
TWINS is shown to be effective on a wide range of image classification datasets in terms of both generalization and robustness.
arXiv Detail & Related papers (2023-03-20T14:12:55Z) - Predicting Temporal Sets with Deep Neural Networks [50.53727580527024]
We propose an integrated solution based on the deep neural networks for temporal sets prediction.
A unique perspective is to learn element relationship by constructing set-level co-occurrence graph.
We design an attention-based module to adaptively learn the temporal dependency of elements and sets.
arXiv Detail & Related papers (2020-06-20T03:29:02Z) - A machine learning approach for forecasting hierarchical time series [4.157415305926584]
We propose a machine learning approach for forecasting hierarchical time series.
Forecast reconciliation is the process of adjusting forecasts to make them coherent across the hierarchy.
We exploit the ability of a deep neural network to extract information capturing the structure of the hierarchy.
arXiv Detail & Related papers (2020-05-31T22:26:16Z) - Conditional Mutual information-based Contrastive Loss for Financial Time
Series Forecasting [12.0855096102517]
We present a representation learning framework for financial time series forecasting.
In this paper, we propose to first learn compact representations from time series data, then use the learned representations to train a simpler model for predicting time series movements.
arXiv Detail & Related papers (2020-02-18T15:24:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.