Category-Level 6D Object Pose Estimation in Agricultural Settings Using a Lattice-Deformation Framework and Diffusion-Augmented Synthetic Data
- URL: http://arxiv.org/abs/2505.24636v1
- Date: Fri, 30 May 2025 14:25:52 GMT
- Title: Category-Level 6D Object Pose Estimation in Agricultural Settings Using a Lattice-Deformation Framework and Diffusion-Augmented Synthetic Data
- Authors: Marios Glytsos, Panagiotis P. Filntisis, George Retsinas, Petros Maragos,
- Abstract summary: We develop a novel framework for category 6D estimation that relies purely on RGB input.<n>We demonstrate the effectiveness of our framework on a challenging benchmark evaluation of various shapes, sizes, and ripeness status.
- Score: 22.68237431620023
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate 6D object pose estimation is essential for robotic grasping and manipulation, particularly in agriculture, where fruits and vegetables exhibit high intra-class variability in shape, size, and texture. The vast majority of existing methods rely on instance-specific CAD models or require depth sensors to resolve geometric ambiguities, making them impractical for real-world agricultural applications. In this work, we introduce PLANTPose, a novel framework for category-level 6D pose estimation that operates purely on RGB input. PLANTPose predicts both the 6D pose and deformation parameters relative to a base mesh, allowing a single category-level CAD model to adapt to unseen instances. This enables accurate pose estimation across varying shapes without relying on instance-specific data. To enhance realism and improve generalization, we also leverage Stable Diffusion to refine synthetic training images with realistic texturing, mimicking variations due to ripeness and environmental factors and bridging the domain gap between synthetic data and the real world. Our evaluations on a challenging benchmark that includes bananas of various shapes, sizes, and ripeness status demonstrate the effectiveness of our framework in handling large intraclass variations while maintaining accurate 6D pose predictions, significantly outperforming the state-of-the-art RGB-based approach MegaPose.
Related papers
- Any6D: Model-free 6D Pose Estimation of Novel Objects [76.30057578269668]
We introduce Any6D, a model-free framework for 6D object pose estimation.<n>It requires only a single RGB-D anchor image to estimate both the 6D pose and size of unknown objects in novel scenes.<n>We evaluate our method on five challenging datasets.
arXiv Detail & Related papers (2025-03-24T13:46:21Z) - Zero123-6D: Zero-shot Novel View Synthesis for RGB Category-level 6D Pose Estimation [66.3814684757376]
This work presents Zero123-6D, the first work to demonstrate the utility of Diffusion Model-based novel-view-synthesizers in enhancing RGB 6D pose estimation at category-level.
The outlined method shows reduction in data requirements, removal of the necessity of depth information in zero-shot category-level 6D pose estimation task, and increased performance, quantitatively demonstrated through experiments on the CO3D dataset.
arXiv Detail & Related papers (2024-03-21T10:38:18Z) - Advancing 6D Pose Estimation in Augmented Reality -- Overcoming Projection Ambiguity with Uncontrolled Imagery [0.0]
This study addresses the challenge of accurate 6D pose estimation in Augmented Reality (AR)
We propose a novel approach that strategically decomposes the estimation of z-axis translation and focal length.
This methodology not only streamlines the 6D pose estimation process but also significantly enhances the accuracy of 3D object overlaying in AR settings.
arXiv Detail & Related papers (2024-03-20T09:22:22Z) - RGB-based Category-level Object Pose Estimation via Decoupled Metric
Scale Recovery [72.13154206106259]
We propose a novel pipeline that decouples the 6D pose and size estimation to mitigate the influence of imperfect scales on rigid transformations.
Specifically, we leverage a pre-trained monocular estimator to extract local geometric information.
A separate branch is designed to directly recover the metric scale of the object based on category-level statistics.
arXiv Detail & Related papers (2023-09-19T02:20:26Z) - PhoCaL: A Multi-Modal Dataset for Category-Level Object Pose Estimation
with Photometrically Challenging Objects [45.31344700263873]
We introduce a multimodal dataset for category-level object pose estimation with photometrically challenging objects termed PhoCaL.
PhoCaL comprises 60 high quality 3D models of household objects over 8 categories including highly reflective, transparent and symmetric objects.
It ensures sub-millimeter accuracy of the pose for opaque textured, shiny and transparent objects, no motion blur and perfect camera synchronisation.
arXiv Detail & Related papers (2022-05-18T09:21:09Z) - FS6D: Few-Shot 6D Pose Estimation of Novel Objects [116.34922994123973]
6D object pose estimation networks are limited in their capability to scale to large numbers of object instances.
In this work, we study a new open set problem; the few-shot 6D object poses estimation: estimating the 6D pose of an unknown object by a few support views without extra training.
arXiv Detail & Related papers (2022-03-28T10:31:29Z) - Spatial Attention Improves Iterative 6D Object Pose Estimation [52.365075652976735]
We propose a new method for 6D pose estimation refinement from RGB images.
Our main insight is that after the initial pose estimate, it is important to pay attention to distinct spatial features of the object.
We experimentally show that this approach learns to attend to salient spatial features and learns to ignore occluded parts of the object, leading to better pose estimation across datasets.
arXiv Detail & Related papers (2021-01-05T17:18:52Z) - Shape Prior Deformation for Categorical 6D Object Pose and Size
Estimation [62.618227434286]
We present a novel learning approach to recover the 6D poses and sizes of unseen object instances from an RGB-D image.
We propose a deep network to reconstruct the 3D object model by explicitly modeling the deformation from a pre-learned categorical shape prior.
arXiv Detail & Related papers (2020-07-16T16:45:05Z) - CPS++: Improving Class-level 6D Pose and Shape Estimation From Monocular
Images With Self-Supervised Learning [74.53664270194643]
Modern monocular 6D pose estimation methods can only cope with a handful of object instances.
We propose a novel method for class-level monocular 6D pose estimation, coupled with metric shape retrieval.
We experimentally demonstrate that we can retrieve precise 6D poses and metric shapes from a single RGB image.
arXiv Detail & Related papers (2020-03-12T15:28:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.