K$^2$IE: Kernel Method-based Kernel Intensity Estimators for Inhomogeneous Poisson Processes
- URL: http://arxiv.org/abs/2505.24704v1
- Date: Fri, 30 May 2025 15:26:35 GMT
- Title: K$^2$IE: Kernel Method-based Kernel Intensity Estimators for Inhomogeneous Poisson Processes
- Authors: Hideaki Kim, Tomoharu Iwata, Akinori Fujino,
- Abstract summary: We propose a novel regularized kernel method for Poisson processes based on the least squares loss.<n>We show that the resulting intensity estimator involves a specialized variant of the representer theorem.<n>We refer to the proposed model as the kernel method-based kernel intensity estimator (K$2$IE)
- Score: 30.855856279840623
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Kernel method-based intensity estimators, formulated within reproducing kernel Hilbert spaces (RKHSs), and classical kernel intensity estimators (KIEs) have been among the most easy-to-implement and feasible methods for estimating the intensity functions of inhomogeneous Poisson processes. While both approaches share the term "kernel", they are founded on distinct theoretical principles, each with its own strengths and limitations. In this paper, we propose a novel regularized kernel method for Poisson processes based on the least squares loss and show that the resulting intensity estimator involves a specialized variant of the representer theorem: it has the dual coefficient of unity and coincides with classical KIEs. This result provides new theoretical insights into the connection between classical KIEs and kernel method-based intensity estimators, while enabling us to develop an efficient KIE by leveraging advanced techniques from RKHS theory. We refer to the proposed model as the kernel method-based kernel intensity estimator (K$^2$IE). Through experiments on synthetic datasets, we show that K$^2$IE achieves comparable predictive performance while significantly surpassing the state-of-the-art kernel method-based estimator in computational efficiency.
Related papers
- Generalization Bound of Gradient Flow through Training Trajectory and Data-dependent Kernel [55.82768375605861]
We establish a generalization bound for gradient flow that aligns with the classical Rademacher complexity for kernel methods.<n>Unlike static kernels such as NTK, the LPK captures the entire training trajectory, adapting to both data and optimization dynamics.
arXiv Detail & Related papers (2025-06-12T23:17:09Z) - Kernel-based retrieval models for hyperspectral image data optimized with Kernel Flows [0.0]
Kernel-based statistical methods are efficient, but their performance depends heavily on the selection of kernel parameters.
We propose a new KF-type approach to optimize Kernel Principal Component Regression (K-PCR) and test it alongside KF-PLS.
Both methods are benchmarked against non-linear regression techniques using two hyperspectral remote sensing datasets.
arXiv Detail & Related papers (2024-11-12T13:54:13Z) - An Exact Kernel Equivalence for Finite Classification Models [1.4777718769290527]
We compare our exact representation to the well-known Neural Tangent Kernel (NTK) and discuss approximation error relative to the NTK.
We use this exact kernel to show that our theoretical contribution can provide useful insights into the predictions made by neural networks.
arXiv Detail & Related papers (2023-08-01T20:22:53Z) - Non-Parametric Learning of Stochastic Differential Equations with Non-asymptotic Fast Rates of Convergence [65.63201894457404]
We propose a novel non-parametric learning paradigm for the identification of drift and diffusion coefficients of non-linear differential equations.<n>The key idea essentially consists of fitting a RKHS-based approximation of the corresponding Fokker-Planck equation to such observations.
arXiv Detail & Related papers (2023-05-24T20:43:47Z) - D4FT: A Deep Learning Approach to Kohn-Sham Density Functional Theory [79.50644650795012]
We propose a deep learning approach to solve Kohn-Sham Density Functional Theory (KS-DFT)
We prove that such an approach has the same expressivity as the SCF method, yet reduces the computational complexity.
In addition, we show that our approach enables us to explore more complex neural-based wave functions.
arXiv Detail & Related papers (2023-03-01T10:38:10Z) - Reconstructing Kernel-based Machine Learning Force Fields with
Super-linear Convergence [0.18416014644193063]
We consider the broad class of Nystr"om-type methods to construct preconditioners.
All considered methods aim to identify a representative subset of inducing ( Kernel) columns to approximate the dominant kernel spectrum.
arXiv Detail & Related papers (2022-12-24T13:45:50Z) - Meta-Learning Hypothesis Spaces for Sequential Decision-making [79.73213540203389]
We propose to meta-learn a kernel from offline data (Meta-KeL)
Under mild conditions, we guarantee that our estimated RKHS yields valid confidence sets.
We also empirically evaluate the effectiveness of our approach on a Bayesian optimization task.
arXiv Detail & Related papers (2022-02-01T17:46:51Z) - Learning primal-dual sparse kernel machines [10.230121160034674]
Traditionally, kernel methods rely on the representer theorem which states that the solution to a learning problem is obtained as a linear combination of the data mapped into the reproducing kernel Hilbert space (RKHS)
We propose to search for a solution in RKHS that has a pre-image decomposition in the original data space, where the elements don't necessarily correspond to the elements in the training set.
Our gradient-based method then hinges on optimisation over possibly sparse elements in the input space, and enables us to obtain a kernel-based model with both primal and dual sparsity.
arXiv Detail & Related papers (2021-08-27T09:38:53Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
We introduce a new scalable variational Gaussian process approximation which provides a high fidelity approximation while retaining general applicability.
We demonstrate that, on a range of regression and classification problems, our approach can exploit input space symmetries such as translations and reflections.
Notably, our approach achieves state-of-the-art results on CIFAR-10 among pure GP models.
arXiv Detail & Related papers (2021-06-10T18:17:57Z) - Flow-based Kernel Prior with Application to Blind Super-Resolution [143.21527713002354]
Kernel estimation is generally one of the key problems for blind image super-resolution (SR)
This paper proposes a normalizing flow-based kernel prior (FKP) for kernel modeling.
Experiments on synthetic and real-world images demonstrate that the proposed FKP can significantly improve the kernel estimation accuracy.
arXiv Detail & Related papers (2021-03-29T22:37:06Z) - Kernel-based L_2-Boosting with Structure Constraints [25.288986409497443]
We propose a kernel-based learning algorithm called kernel-based re-scaled boosting with truncation, dubbed as KReBooT.
The proposed KReBooT benefits in controlling the structure of estimators and producing sparse estimate, and is near overfitting resistant.
arXiv Detail & Related papers (2020-09-16T08:55:30Z) - A Mean-Field Theory for Learning the Sch\"{o}nberg Measure of Radial
Basis Functions [13.503048325896174]
We learn the distribution in the Sch"onberg integral representation of the radial basis functions from training samples.
We prove that in the scaling limits, the empirical measure of the Langevin particles converges to the law of a reflected Ito diffusion-drift process.
arXiv Detail & Related papers (2020-06-23T21:04:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.