Inference Acceleration of Autoregressive Normalizing Flows by Selective Jacobi Decoding
- URL: http://arxiv.org/abs/2505.24791v1
- Date: Fri, 30 May 2025 16:53:15 GMT
- Title: Inference Acceleration of Autoregressive Normalizing Flows by Selective Jacobi Decoding
- Authors: Jiaru Zhang, Juanwu Lu, Ziran Wang, Ruqi Zhang,
- Abstract summary: Normalizing flows are promising generative models with advantages such as theoretical rigor, analytical log-likelihood, and end-to-end training.<n>Recent advancements utilize autoregressive modeling, significantly enhancing expressive power and generation quality.<n>We propose a selective Jacobi decoding (SeJD) strategy that accelerates autoregressive inference through parallel iterative optimization.
- Score: 12.338918067455436
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Normalizing flows are promising generative models with advantages such as theoretical rigor, analytical log-likelihood computation, and end-to-end training. However, the architectural constraints to ensure invertibility and tractable Jacobian computation limit their expressive power and practical usability. Recent advancements utilize autoregressive modeling, significantly enhancing expressive power and generation quality. However, such sequential modeling inherently restricts parallel computation during inference, leading to slow generation that impedes practical deployment. In this paper, we first identify that strict sequential dependency in inference is unnecessary to generate high-quality samples. We observe that patches in sequential modeling can also be approximated without strictly conditioning on all preceding patches. Moreover, the models tend to exhibit low dependency redundancy in the initial layer and higher redundancy in subsequent layers. Leveraging these observations, we propose a selective Jacobi decoding (SeJD) strategy that accelerates autoregressive inference through parallel iterative optimization. Theoretical analyses demonstrate the method's superlinear convergence rate and guarantee that the number of iterations required is no greater than the original sequential approach. Empirical evaluations across multiple datasets validate the generality and effectiveness of our acceleration technique. Experiments demonstrate substantial speed improvements up to 4.7 times faster inference while keeping the generation quality and fidelity.
Related papers
- Preconditioned Inexact Stochastic ADMM for Deep Model [35.37705488695026]
This paper develops an algorithm, PISA, which enables scalable parallel computing and supports various second-moment schemes.<n>Grounded in rigorous theoretical guarantees, the algorithm converges under the sole assumption of Lipschitz of the gradient.<n> Comprehensive experimental evaluations for or fine-tuning diverse FMs, including vision models, large language models, reinforcement learning models, generative adversarial networks, and recurrent neural networks, demonstrate its superior numerical performance compared to various state-of-the-art Directions.
arXiv Detail & Related papers (2025-02-15T12:28:51Z) - COrAL: Order-Agnostic Language Modeling for Efficient Iterative Refinement [80.18490952057125]
Iterative refinement has emerged as an effective paradigm for enhancing the capabilities of large language models (LLMs) on complex tasks.
We propose Context-Wise Order-Agnostic Language Modeling (COrAL) to overcome these challenges.
Our approach models multiple token dependencies within manageable context windows, enabling the model to perform iterative refinement internally.
arXiv Detail & Related papers (2024-10-12T23:56:19Z) - Non-autoregressive Sequence-to-Sequence Vision-Language Models [59.445765313094434]
We propose a parallel decoding sequence-to-sequence vision-language model that marginalizes over multiple inference paths in the decoder.<n>The model achieves performance on-par with its state-of-the-art autoregressive counterpart, but is faster at inference time.
arXiv Detail & Related papers (2024-03-04T17:34:59Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
Two prominent generative models, Generative Adversarial Networks (GANs) and Variational AutoEncoders (VAEs)
GANs suffer from unstable optimization, while VAEs are prone to posterior collapse and over-smoothed generations.
We present a conditional denoising diffusion model, which includes a sequence encoder, a cross-attentive denoising decoder, and a step-wise diffuser.
arXiv Detail & Related papers (2023-04-22T15:32:59Z) - A Stable, Fast, and Fully Automatic Learning Algorithm for Predictive
Coding Networks [65.34977803841007]
Predictive coding networks are neuroscience-inspired models with roots in both Bayesian statistics and neuroscience.
We show how by simply changing the temporal scheduling of the update rule for the synaptic weights leads to an algorithm that is much more efficient and stable than the original one.
arXiv Detail & Related papers (2022-11-16T00:11:04Z) - Breaking the Convergence Barrier: Optimization via Fixed-Time Convergent
Flows [4.817429789586127]
We introduce a Poly-based optimization framework for achieving acceleration, based on the notion of fixed-time stability dynamical systems.
We validate the accelerated convergence properties of the proposed schemes on a range of numerical examples against the state-of-the-art optimization algorithms.
arXiv Detail & Related papers (2021-12-02T16:04:40Z) - Phase Retrieval using Expectation Consistent Signal Recovery Algorithm
based on Hypernetwork [73.94896986868146]
Phase retrieval is an important component in modern computational imaging systems.
Recent advances in deep learning have opened up a new possibility for robust and fast PR.
We develop a novel framework for deep unfolding to overcome the existing limitations.
arXiv Detail & Related papers (2021-01-12T08:36:23Z) - Self Normalizing Flows [65.73510214694987]
We propose a flexible framework for training normalizing flows by replacing expensive terms in the gradient by learned approximate inverses at each layer.
This reduces the computational complexity of each layer's exact update from $mathcalO(D3)$ to $mathcalO(D2)$.
We show experimentally that such models are remarkably stable and optimize to similar data likelihood values as their exact gradient counterparts.
arXiv Detail & Related papers (2020-11-14T09:51:51Z) - Self-Reflective Variational Autoencoder [21.054722609128525]
Variational Autoencoder (VAE) is a powerful framework for learning latent variable generative models.
We introduce a solution, which we call self-reflective inference.
We empirically demonstrate the clear advantages of matching the variational posterior to the exact posterior.
arXiv Detail & Related papers (2020-07-10T05:05:26Z) - Scalable Second Order Optimization for Deep Learning [34.12384996822749]
We present a scalable implementation of a second-order preconditioned method (concretely, a variant of full-matrix Adagrad)
Our novel design effectively utilizes the prevalent heterogeneous hardware architecture for training deep models, consisting of a multicore CPU coupled with multiple accelerator units.
We demonstrate superior performance compared to state-of-the-art on very large learning tasks such as machine translation with Transformers, language modeling with BERT, click-through rate prediction on Criteo, and image classification on ImageNet with ResNet-50.
arXiv Detail & Related papers (2020-02-20T20:51:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.