RealDrive: Retrieval-Augmented Driving with Diffusion Models
- URL: http://arxiv.org/abs/2505.24808v1
- Date: Fri, 30 May 2025 17:15:03 GMT
- Title: RealDrive: Retrieval-Augmented Driving with Diffusion Models
- Authors: Wenhao Ding, Sushant Veer, Yuxiao Chen, Yulong Cao, Chaowei Xiao, Marco Pavone,
- Abstract summary: Learning-based planners generate human-like driving behaviors by learning to reason about nuanced interactions from data.<n>Data-driven approaches often struggle with rare, safety-critical scenarios and offer limited controllability over the generated trajectories.<n>We propose RealDrive, a Retrieval-Augmented Generation framework that initializes a diffusion-based planning policy by retrieving the most relevant expert demonstrations from the training dataset.
- Score: 42.6467760755688
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning-based planners generate natural human-like driving behaviors by learning to reason about nuanced interactions from data, overcoming the rigid behaviors that arise from rule-based planners. Nonetheless, data-driven approaches often struggle with rare, safety-critical scenarios and offer limited controllability over the generated trajectories. To address these challenges, we propose RealDrive, a Retrieval-Augmented Generation (RAG) framework that initializes a diffusion-based planning policy by retrieving the most relevant expert demonstrations from the training dataset. By interpolating between current observations and retrieved examples through a denoising process, our approach enables fine-grained control and safe behavior across diverse scenarios, leveraging the strong prior provided by the retrieved scenario. Another key insight we produce is that a task-relevant retrieval model trained with planning-based objectives results in superior planning performance in our framework compared to a task-agnostic retriever. Experimental results demonstrate improved generalization to long-tail events and enhanced trajectory diversity compared to standard learning-based planners -- we observe a 40% reduction in collision rate on the Waymo Open Motion dataset with RAG.
Related papers
- RAD: Retrieval High-quality Demonstrations to Enhance Decision-making [23.136426643341462]
offline reinforcement learning (RL) enables agents to learn policies from fixed datasets.<n>RL is often limited by dataset sparsity and the lack of transition overlap between suboptimal and expert trajectories.<n>We propose Retrieval High-quAlity Demonstrations (RAD) for decision-making, which combines non-parametric retrieval with diffusion-based generative modeling.
arXiv Detail & Related papers (2025-07-21T08:08:18Z) - Latent Diffusion Planning for Imitation Learning [78.56207566743154]
Latent Diffusion Planning (LDP) is a modular approach consisting of a planner and inverse dynamics model.<n>By separating planning from action prediction, LDP can benefit from the denser supervision signals of suboptimal and action-free data.<n>On simulated visual robotic manipulation tasks, LDP outperforms state-of-the-art imitation learning approaches.
arXiv Detail & Related papers (2025-04-23T17:53:34Z) - Zero-Shot Whole-Body Humanoid Control via Behavioral Foundation Models [71.34520793462069]
Unsupervised reinforcement learning (RL) aims at pre-training agents that can solve a wide range of downstream tasks in complex environments.<n>We introduce a novel algorithm regularizing unsupervised RL towards imitating trajectories from unlabeled behavior datasets.<n>We demonstrate the effectiveness of this new approach in a challenging humanoid control problem.
arXiv Detail & Related papers (2025-04-15T10:41:11Z) - Learning from Reward-Free Offline Data: A Case for Planning with Latent Dynamics Models [31.509112804985133]
Reinforcement learning (RL) learns policies through trial and error, and optimal control, which plans actions using a learned or known dynamics model.<n>We systematically analyze the performance of different RL and control-based methods under datasets of varying quality.<n>Our results show that model-free RL excels when abundant, high-quality data is available, while model-based planning excels in generalization to novel environment layouts, trajectory stitching, and data-efficiency.
arXiv Detail & Related papers (2025-02-20T18:39:41Z) - Making Large Language Models Better Planners with Reasoning-Decision Alignment [70.5381163219608]
We motivate an end-to-end decision-making model based on multimodality-augmented LLM.
We propose a reasoning-decision alignment constraint between the paired CoTs and planning results.
We dub our proposed large language planners with reasoning-decision alignment as RDA-Driver.
arXiv Detail & Related papers (2024-08-25T16:43:47Z) - Validity Learning on Failures: Mitigating the Distribution Shift in Autonomous Vehicle Planning [2.3558144417896583]
The planning problem constitutes a fundamental aspect of the autonomous driving framework.
We propose Validity Learning on Failures, VL(on failure) as a remedy to address this issue.
We show that VL(on failure) outperforms the state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2024-06-03T17:25:18Z) - Controllable Diverse Sampling for Diffusion Based Motion Behavior
Forecasting [11.106812447960186]
We introduce a novel trajectory generator named Controllable Diffusion Trajectory (CDT)
CDT integrates information and social interactions into a Transformer-based conditional denoising diffusion model to guide the prediction of future trajectories.
To ensure multimodality, we incorporate behavioral tokens to direct the trajectory's modes, such as going straight, turning right or left.
arXiv Detail & Related papers (2024-02-06T13:16:54Z) - Predictive Experience Replay for Continual Visual Control and
Forecasting [62.06183102362871]
We present a new continual learning approach for visual dynamics modeling and explore its efficacy in visual control and forecasting.
We first propose the mixture world model that learns task-specific dynamics priors with a mixture of Gaussians, and then introduce a new training strategy to overcome catastrophic forgetting.
Our model remarkably outperforms the naive combinations of existing continual learning and visual RL algorithms on DeepMind Control and Meta-World benchmarks with continual visual control tasks.
arXiv Detail & Related papers (2023-03-12T05:08:03Z) - When Demonstrations Meet Generative World Models: A Maximum Likelihood
Framework for Offline Inverse Reinforcement Learning [62.00672284480755]
This paper aims to recover the structure of rewards and environment dynamics that underlie observed actions in a fixed, finite set of demonstrations from an expert agent.
Accurate models of expertise in executing a task has applications in safety-sensitive applications such as clinical decision making and autonomous driving.
arXiv Detail & Related papers (2023-02-15T04:14:20Z) - Distribution-aware Goal Prediction and Conformant Model-based Planning
for Safe Autonomous Driving [16.654299927694716]
We reformulate the learning-to-drive task as obstacle-aware perception and grounding, distribution-aware goal prediction, and model-based planning.
Under the CARLA simulator, we report state-of-the-art results on the CARNOVEL benchmark.
arXiv Detail & Related papers (2022-12-16T21:51:51Z) - Towards Out-of-Distribution Sequential Event Prediction: A Causal
Treatment [72.50906475214457]
The goal of sequential event prediction is to estimate the next event based on a sequence of historical events.
In practice, the next-event prediction models are trained with sequential data collected at one time.
We propose a framework with hierarchical branching structures for learning context-specific representations.
arXiv Detail & Related papers (2022-10-24T07:54:13Z) - Goal-Directed Planning for Habituated Agents by Active Inference Using a
Variational Recurrent Neural Network [5.000272778136268]
This study shows that the predictive coding (PC) and active inference (AIF) frameworks can develop better generalization by learning a prior distribution in a low dimensional latent state space.
In our proposed model, learning is carried out by inferring optimal latent variables as well as synaptic weights for maximizing the evidence lower bound.
Our proposed model was evaluated with both simple and complex robotic tasks in simulation, which demonstrated sufficient generalization in learning with limited training data.
arXiv Detail & Related papers (2020-05-27T06:43:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.