Multilinguality Does not Make Sense: Investigating Factors Behind Zero-Shot Transfer in Sense-Aware Tasks
- URL: http://arxiv.org/abs/2505.24834v1
- Date: Fri, 30 May 2025 17:36:20 GMT
- Title: Multilinguality Does not Make Sense: Investigating Factors Behind Zero-Shot Transfer in Sense-Aware Tasks
- Authors: Roksana Goworek, Haim Dubossarsky,
- Abstract summary: Cross-lingual transfer allows models to perform tasks in languages unseen during training.<n>We show that multilingual training is neither necessary nor inherently beneficial for effective transfer.
- Score: 1.571499916304475
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cross-lingual transfer allows models to perform tasks in languages unseen during training and is often assumed to benefit from increased multilinguality. In this work, we challenge this assumption in the context of two underexplored, sense-aware tasks: polysemy disambiguation and lexical semantic change. Through a large-scale analysis across 28 languages, we show that multilingual training is neither necessary nor inherently beneficial for effective transfer. Instead, we find that confounding factors - such as fine-tuning data composition and evaluation artifacts - better account for the perceived advantages of multilinguality. Our findings call for more rigorous evaluations in multilingual NLP. We release fine-tuned models and benchmarks to support further research, with implications extending to low-resource and typologically diverse languages.
Related papers
- Analyzing the Effect of Linguistic Similarity on Cross-Lingual Transfer: Tasks and Experimental Setups Matter [5.237387600625361]
Cross-lingual transfer is a popular approach to increase the amount of training data for NLP tasks in a low-resource context.<n>In this work, we analyze cross-lingual transfer for 263 languages from a wide variety of language families.
arXiv Detail & Related papers (2025-01-24T13:48:10Z) - Can Machine Translation Bridge Multilingual Pretraining and Cross-lingual Transfer Learning? [8.630930380973489]
This paper investigates the potential benefits of employing machine translation as a continued training objective to enhance language representation learning.
Our results show that, contrary to expectations, machine translation as the continued training fails to enhance cross-lingual representation learning.
We conclude that explicit sentence-level alignment in the cross-lingual scenario is detrimental to cross-lingual transfer pretraining.
arXiv Detail & Related papers (2024-03-25T13:53:04Z) - Analyzing the Evaluation of Cross-Lingual Knowledge Transfer in
Multilingual Language Models [12.662039551306632]
We show that observed high performance of multilingual models can be largely attributed to factors not requiring the transfer of actual linguistic knowledge.
More specifically, we observe what has been transferred across languages is mostly data artifacts and biases, especially for low-resource languages.
arXiv Detail & Related papers (2024-02-03T09:41:52Z) - Analyzing the Mono- and Cross-Lingual Pretraining Dynamics of
Multilingual Language Models [73.11488464916668]
This study investigates the dynamics of the multilingual pretraining process.
We probe checkpoints taken from throughout XLM-R pretraining, using a suite of linguistic tasks.
Our analysis shows that the model achieves high in-language performance early on, with lower-level linguistic skills acquired before more complex ones.
arXiv Detail & Related papers (2022-05-24T03:35:00Z) - Towards Best Practices for Training Multilingual Dense Retrieval Models [54.91016739123398]
We focus on the task of monolingual retrieval in a variety of typologically diverse languages using one such design.
Our study is organized as a "best practices" guide for training multilingual dense retrieval models.
arXiv Detail & Related papers (2022-04-05T17:12:53Z) - Delving Deeper into Cross-lingual Visual Question Answering [115.16614806717341]
We show that simple modifications to the standard training setup can substantially reduce the transfer gap to monolingual English performance.
We analyze cross-lingual VQA across different question types of varying complexity for different multilingual multimodal Transformers.
arXiv Detail & Related papers (2022-02-15T18:22:18Z) - AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages
with Adversarial Examples [51.048234591165155]
We present AM2iCo, Adversarial and Multilingual Meaning in Context.
It aims to faithfully assess the ability of state-of-the-art (SotA) representation models to understand the identity of word meaning in cross-lingual contexts.
Results reveal that current SotA pretrained encoders substantially lag behind human performance.
arXiv Detail & Related papers (2021-04-17T20:23:45Z) - First Align, then Predict: Understanding the Cross-Lingual Ability of
Multilingual BERT [2.2931318723689276]
Cross-lingual transfer emerges from fine-tuning on a task of interest in one language and evaluating on a distinct language, not seen during the fine-tuning.
We show that multilingual BERT can be viewed as the stacking of two sub-networks: a multilingual encoder followed by a task-specific language-agnostic predictor.
While the encoder is crucial for cross-lingual transfer and remains mostly unchanged during fine-tuning, the task predictor has little importance on the transfer and can be red during fine-tuning.
arXiv Detail & Related papers (2021-01-26T22:12:38Z) - Gender Bias in Multilingual Embeddings and Cross-Lingual Transfer [101.58431011820755]
We study gender bias in multilingual embeddings and how it affects transfer learning for NLP applications.
We create a multilingual dataset for bias analysis and propose several ways for quantifying bias in multilingual representations.
arXiv Detail & Related papers (2020-05-02T04:34:37Z) - Translation Artifacts in Cross-lingual Transfer Learning [51.66536640084888]
We show that machine translation can introduce subtle artifacts that have a notable impact in existing cross-lingual models.
In natural language inference, translating the premise and the hypothesis independently can reduce the lexical overlap between them.
We also improve the state-of-the-art in XNLI for the translate-test and zero-shot approaches by 4.3 and 2.8 points, respectively.
arXiv Detail & Related papers (2020-04-09T17:54:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.