Modality Equilibrium Matters: Minor-Modality-Aware Adaptive Alternating for Cross-Modal Memory Enhancement
- URL: http://arxiv.org/abs/2506.00030v1
- Date: Mon, 26 May 2025 02:02:57 GMT
- Title: Modality Equilibrium Matters: Minor-Modality-Aware Adaptive Alternating for Cross-Modal Memory Enhancement
- Authors: Xiang Shi, Rui Zhang, Jiawei Liu, Yinpeng Liu, Qikai Cheng, Wei Lu,
- Abstract summary: We propose a Shapley-guided alternating training framework that adaptively prioritizes minor modalities to balance and thus enhance the fusion.<n>We evaluate the performance in both balance and accuracy across four multimodal benchmark datasets, where our method achieves state-of-the-art (SOTA) results.
- Score: 13.424541949553964
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal fusion is susceptible to modality imbalance, where dominant modalities overshadow weak ones, easily leading to biased learning and suboptimal fusion, especially for incomplete modality conditions. To address this problem, we propose a Shapley-guided alternating training framework that adaptively prioritizes minor modalities to balance and thus enhance the fusion. Our method leverages Shapley Value-based scheduling to improve the training sequence adaptively, ensuring that under-optimized modalities receive sufficient learning. Additionally, we introduce the memory module to refine and inherit modality-specific representations with a cross-modal mapping mechanism to align features at both the feature and sample levels. To further validate the adaptability of the proposed approach, the encoder module empirically adopts both conventional and LLM-based backbones. With building up a novel multimodal equilibrium metric, namely, equilibrium deviation metric (EDM), we evaluate the performance in both balance and accuracy across four multimodal benchmark datasets, where our method achieves state-of-the-art (SOTA) results. Meanwhile, robustness analysis under missing modalities highlights its strong generalization capabilities. Accordingly, our findings reveal the untapped potential of alternating training, demonstrating that strategic modality prioritization fundamentally balances and promotes multimodal learning, offering a new paradigm for optimizing multimodal training dynamics.
Related papers
- Learning to Fuse: Modality-Aware Adaptive Scheduling for Robust Multimodal Foundation Models [0.0]
Modality-Aware Adaptive Fusion Scheduling (MA-AFS) learns to dynamically modulate the contribution of each modality on a per-instance basis.<n>Our work highlights the importance of adaptive fusion and opens a promising direction toward reliable and uncertainty-aware multimodal learning.
arXiv Detail & Related papers (2025-06-15T05:57:45Z) - DynCIM: Dynamic Curriculum for Imbalanced Multimodal Learning [15.524342129628957]
DynCIM is a novel dynamic curriculum learning framework designed to quantify the inherent imbalances from both sample and modality perspectives.<n>DynCIM employs a sample-level curriculum to dynamically assess each sample's difficulty according to prediction deviation, consistency, and stability.<n>A modality-level curriculum measures modality contributions from global and local.
arXiv Detail & Related papers (2025-03-09T05:30:15Z) - Asymmetric Reinforcing against Multi-modal Representation Bias [59.685072206359855]
We propose an Asymmetric Reinforcing method against Multimodal representation bias (ARM)<n>Our ARM dynamically reinforces the weak modalities while maintaining the ability to represent dominant modalities through conditional mutual information.<n>We have significantly improved the performance of multimodal learning, making notable progress in mitigating imbalanced multimodal learning.
arXiv Detail & Related papers (2025-01-02T13:00:06Z) - Balance-aware Sequence Sampling Makes Multi-modal Learning Better [0.5439020425819]
We propose Balance-aware Sequence Sampling (BSS) to enhance the robustness of MML.<n>Via a multi-perspective measurer, we first define a multi-perspective measurer to evaluate the balance degree of each sample.<n>We employ a scheduler based on curriculum learning (CL) that incrementally provides training subsets, progressing from balanced to imbalanced samples to rebalance MML.
arXiv Detail & Related papers (2025-01-01T06:19:55Z) - LLMs Can Evolve Continually on Modality for X-Modal Reasoning [62.2874638875554]
Existing methods rely heavily on modal-specific pretraining and joint-modal tuning, leading to significant computational burdens when expanding to new modalities.
We propose PathWeave, a flexible and scalable framework with modal-Path sWitching and ExpAnsion abilities.
PathWeave performs comparably to state-of-the-art MLLMs while concurrently reducing parameter training burdens by 98.73%.
arXiv Detail & Related papers (2024-10-26T13:19:57Z) - On-the-fly Modulation for Balanced Multimodal Learning [53.616094855778954]
Multimodal learning is expected to boost model performance by integrating information from different modalities.
The widely-used joint training strategy leads to imbalanced and under-optimized uni-modal representations.
We propose On-the-fly Prediction Modulation (OPM) and On-the-fly Gradient Modulation (OGM) strategies to modulate the optimization of each modality.
arXiv Detail & Related papers (2024-10-15T13:15:50Z) - A Stochastic Approach to Bi-Level Optimization for Hyperparameter Optimization and Meta Learning [74.80956524812714]
We tackle the general differentiable meta learning problem that is ubiquitous in modern deep learning.
These problems are often formalized as Bi-Level optimizations (BLO)
We introduce a novel perspective by turning a given BLO problem into a ii optimization, where the inner loss function becomes a smooth distribution, and the outer loss becomes an expected loss over the inner distribution.
arXiv Detail & Related papers (2024-10-14T12:10:06Z) - Multimodal Classification via Modal-Aware Interactive Enhancement [6.621745547882088]
We propose a novel multimodal learning method, called modal-aware interactive enhancement (MIE)
Specifically, we first utilize an optimization strategy based on sharpness aware minimization (SAM) to smooth the learning objective during the forward phase.
Then, with the help of the geometry property of SAM, we propose a gradient modification strategy to impose the influence between different modalities during the backward phase.
arXiv Detail & Related papers (2024-07-05T15:32:07Z) - Unleashing Network Potentials for Semantic Scene Completion [50.95486458217653]
This paper proposes a novel SSC framework - Adrial Modality Modulation Network (AMMNet)
AMMNet introduces two core modules: a cross-modal modulation enabling the interdependence of gradient flows between modalities, and a customized adversarial training scheme leveraging dynamic gradient competition.
Extensive experimental results demonstrate that AMMNet outperforms state-of-the-art SSC methods by a large margin.
arXiv Detail & Related papers (2024-03-12T11:48:49Z) - Exploiting modality-invariant feature for robust multimodal emotion
recognition with missing modalities [76.08541852988536]
We propose to use invariant features for a missing modality imagination network (IF-MMIN)
We show that the proposed model outperforms all baselines and invariantly improves the overall emotion recognition performance under uncertain missing-modality conditions.
arXiv Detail & Related papers (2022-10-27T12:16:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.