Autonomous Behavior and Whole-Brain Dynamics Emerge in Embodied Zebrafish Agents with Model-based Intrinsic Motivation
- URL: http://arxiv.org/abs/2506.00138v1
- Date: Fri, 30 May 2025 18:21:40 GMT
- Title: Autonomous Behavior and Whole-Brain Dynamics Emerge in Embodied Zebrafish Agents with Model-based Intrinsic Motivation
- Authors: Reece Keller, Alyn Tornell, Felix Pei, Xaq Pitkow, Leo Kozachkov, Aran Nayebi,
- Abstract summary: Autonomy is a hallmark of animal intelligence, enabling adaptive and intelligent behavior in complex environments without relying on external reward or task structure.<n>We introduce a novel model-based intrinsic drive explicitly designed to capture robust autonomous exploration observed in animals.<n>Our findings establish a computational framework connecting model-based intrinsic motivation to naturalistic behavior, providing a foundation for building artificial agents with animal-like autonomy.
- Score: 6.291854967532677
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomy is a hallmark of animal intelligence, enabling adaptive and intelligent behavior in complex environments without relying on external reward or task structure. Existing reinforcement learning approaches to exploration in sparse reward and reward-free environments, including class of methods known as intrinsic motivation, exhibit inconsistent exploration patterns and thus fail to produce robust autonomous behaviors observed in animals. Moreover, systems neuroscience has largely overlooked the neural basis of autonomy, focusing instead on experimental paradigms where animals are motivated by external reward rather than engaging in unconstrained, naturalistic and task-independent behavior. To bridge these gaps, we introduce a novel model-based intrinsic drive explicitly designed to capture robust autonomous exploration observed in animals. Our method (3M-Progress) motivates naturalistic behavior by tracking divergence between the agent's current world model and an ethological prior. We demonstrate that artificial embodied agents trained with 3M-Progress capture the explainable variance in behavioral patterns and whole-brain neural-glial dynamics recorded from autonomously-behaving larval zebrafish, introducing the first goal-driven, population-level model of neural-glial computation. Our findings establish a computational framework connecting model-based intrinsic motivation to naturalistic behavior, providing a foundation for building artificial agents with animal-like autonomy.
Related papers
- Langevin Flows for Modeling Neural Latent Dynamics [81.81271685018284]
We introduce LangevinFlow, a sequential Variational Auto-Encoder where the time evolution of latent variables is governed by the underdamped Langevin equation.<n>Our approach incorporates physical priors -- such as inertia, damping, a learned potential function, and forces -- to represent both autonomous and non-autonomous processes in neural systems.<n>Our method outperforms state-of-the-art baselines on synthetic neural populations generated by a Lorenz attractor.
arXiv Detail & Related papers (2025-07-15T17:57:48Z) - Neural Brain: A Neuroscience-inspired Framework for Embodied Agents [58.58177409853298]
Current AI systems, such as large language models, remain disembodied, unable to physically engage with the world.<n>At the core of this challenge lies the concept of Neural Brain, a central intelligence system designed to drive embodied agents with human-like adaptability.<n>This paper introduces a unified framework for the Neural Brain of embodied agents, addressing two fundamental challenges.
arXiv Detail & Related papers (2025-05-12T15:05:34Z) - Emergence of Goal-Directed Behaviors via Active Inference with Self-Prior [4.863927022806184]
Infants often exhibit goal-directed behaviors, such as reaching for a sensory stimulus, even when no external reward criterion is provided.<n>We propose a novel density model for an agent's own multimodal sensory experiences, called the "self-prior"<n>Our study implements intrinsically motivated behavior shaped by the agent's own sensory experiences, demonstrating the spontaneous emergence of intentional behavior during early development.
arXiv Detail & Related papers (2025-04-15T11:16:27Z) - Meta-Representational Predictive Coding: Biomimetic Self-Supervised Learning [51.22185316175418]
We present a new form of predictive coding that we call meta-representational predictive coding (MPC)<n>MPC sidesteps the need for learning a generative model of sensory input by learning to predict representations of sensory input across parallel streams.
arXiv Detail & Related papers (2025-03-22T22:13:14Z) - Modeling Dynamic Neural Activity by combining Naturalistic Video Stimuli and Stimulus-independent Latent Factors [5.967290675400836]
We propose a probabilistic model that predicts the joint distribution of the neuronal responses from video stimuli and stimulus-independent latent factors.<n>We find that it outperforms video-only models in terms of log-likelihood and achieves improvements in likelihood and correlation when conditioned on responses from other neurons.
arXiv Detail & Related papers (2024-10-21T16:01:39Z) - From Data-Fitting to Discovery: Interpreting the Neural Dynamics of
Motor Control through Reinforcement Learning [3.6159844753873087]
We study structured neural activity of a virtual robot performing legged locomotion.
We find that embodied agents trained to walk exhibit smooth dynamics that avoid tangling -- or opposing neural trajectories in neighboring neural space.
arXiv Detail & Related papers (2023-05-18T16:52:27Z) - Intrinsic Motivation in Dynamical Control Systems [5.635628182420597]
We investigate an information-theoretic approach to intrinsic motivation, based on maximizing an agent's empowerment.
We show that this approach generalizes previous attempts to formalize intrinsic motivation.
This opens the door for designing practical artificial, intrinsically motivated controllers.
arXiv Detail & Related papers (2022-12-29T05:20:08Z) - Inference of Affordances and Active Motor Control in Simulated Agents [0.5161531917413706]
We introduce an output-probabilistic, temporally predictive, modular artificial neural network architecture.
We show that our architecture develops latent states that can be interpreted as affordance maps.
In combination with active inference, we show that flexible, goal-directed behavior can be invoked.
arXiv Detail & Related papers (2022-02-23T14:13:04Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
A fundamental goal in neuroscience is to understand the relationship between neural activity and behavior.
We generated a new multimodal dataset consisting of the spontaneous behaviors generated by fruit flies.
This dataset and our new set of augmentations promise to accelerate the application of self-supervised learning methods in neuroscience.
arXiv Detail & Related papers (2021-11-29T15:27:51Z) - Backprop-Free Reinforcement Learning with Active Neural Generative
Coding [84.11376568625353]
We propose a computational framework for learning action-driven generative models without backpropagation of errors (backprop) in dynamic environments.
We develop an intelligent agent that operates even with sparse rewards, drawing inspiration from the cognitive theory of planning as inference.
The robust performance of our agent offers promising evidence that a backprop-free approach for neural inference and learning can drive goal-directed behavior.
arXiv Detail & Related papers (2021-07-10T19:02:27Z) - Continuous Learning and Adaptation with Membrane Potential and
Activation Threshold Homeostasis [91.3755431537592]
This paper presents the Membrane Potential and Activation Threshold Homeostasis (MPATH) neuron model.
The model allows neurons to maintain a form of dynamic equilibrium by automatically regulating their activity when presented with input.
Experiments demonstrate the model's ability to adapt to and continually learn from its input.
arXiv Detail & Related papers (2021-04-22T04:01:32Z) - Variational Dynamic for Self-Supervised Exploration in Deep Reinforcement Learning [12.76337275628074]
In this work, we propose a variational dynamic model based on the conditional variational inference to model the multimodality andgenerativeity.
We derive an upper bound of the negative log-likelihood of the environmental transition and use such an upper bound as the intrinsic reward for exploration.
Our method outperforms several state-of-the-art environment model-based exploration approaches.
arXiv Detail & Related papers (2020-10-17T09:54:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.