Performance Analysis of Convolutional Neural Network By Applying Unconstrained Binary Quadratic Programming
- URL: http://arxiv.org/abs/2506.00247v1
- Date: Fri, 30 May 2025 21:25:31 GMT
- Title: Performance Analysis of Convolutional Neural Network By Applying Unconstrained Binary Quadratic Programming
- Authors: Aasish Kumar Sharma, Sanjeeb Prashad Pandey, Julian M. Kunkel,
- Abstract summary: Convolutional Neural Networks (CNNs) are pivotal in computer vision and Big Data analytics but demand significant computational resources when trained on large-scale datasets.<n>We propose a hybrid optimization method that combines Unconstrained Binary Quadratic Programming (UBQP) with Gradient Descent (SGD) to accelerate CNN training.<n>Our approach achieves a 10--15% accuracy improvement over a standard BP-CNN baseline while maintaining similar execution times.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Convolutional Neural Networks (CNNs) are pivotal in computer vision and Big Data analytics but demand significant computational resources when trained on large-scale datasets. Conventional training via back-propagation (BP) with losses like Mean Squared Error or Cross-Entropy often requires extensive iterations and may converge sub-optimally. Quantum computing offers a promising alternative by leveraging superposition, tunneling, and entanglement to search complex optimization landscapes more efficiently. In this work, we propose a hybrid optimization method that combines an Unconstrained Binary Quadratic Programming (UBQP) formulation with Stochastic Gradient Descent (SGD) to accelerate CNN training. Evaluated on the MNIST dataset, our approach achieves a 10--15\% accuracy improvement over a standard BP-CNN baseline while maintaining similar execution times. These results illustrate the potential of hybrid quantum-classical techniques in High-Performance Computing (HPC) environments for Big Data and Deep Learning. Fully realizing these benefits, however, requires a careful alignment of algorithmic structures with underlying quantum mechanisms.
Related papers
- Quantum-Classical Hybrid Quantized Neural Network [7.759760132559044]
We present a novel Quadratic Binary Optimization (QBO) model for quantized neural network training, enabling the use of arbitrary activation and loss functions.<n>We employ the Quantum Gradient Conditional Descent (QCGD) algorithm, which leverages quantum computing to directly solve the QCBO problem.<n> Experimental results using a coherent Ising machine (CIM) demonstrate a 94.95% accuracy on the Fashion MNIST classification task, with only 1.1-bit precision.
arXiv Detail & Related papers (2025-06-23T02:12:36Z) - Partially-Supervised Neural Network Model For Quadratic Multiparametric Programming [2.765106384328772]
This study proposes a partially-supervised NN architecture that directly represents the mathematical structure of the global solution function.<n>In contrast to generic NN training approaches, the proposed PSNN method derives a large proportion of model weights directly from the mathematical properties of the optimization problem.
arXiv Detail & Related papers (2025-06-05T20:26:18Z) - Efficient Training of Deep Neural Operator Networks via Randomized Sampling [0.0]
We introduce a random sampling technique to be adopted the training of DeepONet.<n>We demonstrate substantial reductions in training time while achieving comparable or lower overall test errors relative to the traditional training approach.<n>Our results indicate that incorporating randomization in the trunk network inputs during training enhances the efficiency and robustness of DeepONet.
arXiv Detail & Related papers (2024-09-20T07:18:31Z) - The Convex Landscape of Neural Networks: Characterizing Global Optima
and Stationary Points via Lasso Models [75.33431791218302]
Deep Neural Network Network (DNN) models are used for programming purposes.
In this paper we examine the use of convex neural recovery models.
We show that all the stationary non-dimensional objective objective can be characterized as the standard a global subsampled convex solvers program.
We also show that all the stationary non-dimensional objective objective can be characterized as the standard a global subsampled convex solvers program.
arXiv Detail & Related papers (2023-12-19T23:04:56Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Learning k-Level Structured Sparse Neural Networks Using Group Envelope Regularization [4.0554893636822]
We introduce a novel approach to deploy large-scale Deep Neural Networks on constrained resources.
The method speeds up inference time and aims to reduce memory demand and power consumption.
arXiv Detail & Related papers (2022-12-25T15:40:05Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - GNN at the Edge: Cost-Efficient Graph Neural Network Processing over
Distributed Edge Servers [24.109721494781592]
Graph Neural Networks (GNNs) are still under exploration, presenting a stark disparity to its broad edge adoptions.
This paper studies the cost optimization for distributed GNN processing over a multi-tier heterogeneous edge network.
We show that our approach achieves superior performance over de facto baselines with more than 95.8% cost eduction in a fast convergence speed.
arXiv Detail & Related papers (2022-10-31T13:03:16Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - JUMBO: Scalable Multi-task Bayesian Optimization using Offline Data [86.8949732640035]
We propose JUMBO, an MBO algorithm that sidesteps limitations by querying additional data.
We show that it achieves no-regret under conditions analogous to GP-UCB.
Empirically, we demonstrate significant performance improvements over existing approaches on two real-world optimization problems.
arXiv Detail & Related papers (2021-06-02T05:03:38Z) - Optimal Transport Based Refinement of Physics-Informed Neural Networks [0.0]
We propose a refinement strategy to the well-known Physics-Informed Neural Networks (PINNs) for solving partial differential equations (PDEs) based on the concept of Optimal Transport (OT)
PINNs solvers have been found to suffer from a host of issues: spectral bias in fully-connected pathologies, unstable gradient, and difficulties with convergence and accuracy.
We present a novel training strategy for solving the Fokker-Planck-Kolmogorov Equation (FPKE) using OT-based sampling to supplement the existing PINNs framework.
arXiv Detail & Related papers (2021-05-26T02:51:20Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
Training deep neural networks on large-scale datasets requires significant hardware resources.
Backpropagation, the workhorse for training these networks, is an inherently sequential process that is difficult to parallelize.
We propose a neuro-biologically-plausible alternative to backprop that can be used to train deep networks.
arXiv Detail & Related papers (2020-02-10T16:20:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.