Lossless Token Sequence Compression via Meta-Tokens
- URL: http://arxiv.org/abs/2506.00307v1
- Date: Fri, 30 May 2025 23:32:57 GMT
- Title: Lossless Token Sequence Compression via Meta-Tokens
- Authors: John Harvill, Ziwei Fan, Hao Wang, Yizhou Sun, Hao Ding, Luke Huan, Anoop Deoras,
- Abstract summary: We introduce a task-agnostic lossless compression technique similar to LZ77 that makes it possible to reduce the input token sequence length on average by 27% and 18%.<n>We evaluate our proposed approach on two tasks that require strict preservation of semantics/syntax and demonstrate that existing lossy compression methods perform poorly in this setting.
- Score: 34.795097157742624
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Existing work on prompt compression for Large Language Models (LLM) focuses on lossy methods that try to maximize the retention of semantic information that is relevant to downstream tasks while significantly reducing the sequence length. In this paper, we introduce a task-agnostic lossless compression technique similar to LZ77 that makes it possible to reduce the input token sequence length on average by 27\% and 18\% for the two evaluation tasks explored here. Given that we use transformer-based LLMs, this equates to 47\% and 33\% less encoding computation, respectively, due to the quadratic nature of attention. The token sequence transformation is trivial to reverse and highlights that no semantic information is lost in the process. We evaluate our proposed approach on two tasks that require strict preservation of semantics/syntax and demonstrate that existing lossy compression methods perform poorly in this setting. We find that our lossless compression technique produces only a small gap in performance compared to using the uncompressed input and posit that larger models and an expanded computing budget would likely erase the gap entirely.
Related papers
- Efficient Token Compression for Vision Transformer with Spatial Information Preserved [59.79302182800274]
Token compression is essential for reducing the computational and memory requirements of transformer models.<n>We propose an efficient and hardware-compatible token compression method called Prune and Merge.
arXiv Detail & Related papers (2025-03-30T14:23:18Z) - TACO-RL: Task Aware Prompt Compression Optimization with Reinforcement Learning [11.167198972934736]
Large language models (LLMs) such as GPT-4 have led to a surge in the size of prompts required for optimal performance.<n>We propose a novel and efficient reinforcement learning (RL) based task-aware prompt compression method.<n>We demonstrate that our RL-guided compression method improves the task performance by 8% - 189% over state-of-the-art compression techniques.
arXiv Detail & Related papers (2024-09-19T18:11:59Z) - LanguaShrink: Reducing Token Overhead with Psycholinguistics [8.123272461141815]
LanguaShrink is a prompt compression framework for large language models.
It reduces prompt length while preserving essential information.
Compared to existing prompt compression methods, LanguaShrink improves end-to-end latency by 1.43 times.
arXiv Detail & Related papers (2024-09-01T22:09:20Z) - Concise and Precise Context Compression for Tool-Using Language Models [60.606281074373136]
We propose two strategies for compressing tool documentation into concise and precise summary sequences for tool-using language models.
Results on API-Bank and APIBench show that our approach reaches a performance comparable to the upper-bound baseline under up to 16x compression ratio.
arXiv Detail & Related papers (2024-07-02T08:17:00Z) - In-Context Former: Lightning-fast Compressing Context for Large Language Model [48.831304302467004]
In this paper, we propose a new approach to compress the long input contexts of Transformer-based large language models (LLMs)
We use the cross-attention mechanism and a small number of learnable digest tokens to condense information from the contextual word embeddings.
Experimental results indicate that our method requires only 1/32 of the floating-point operations of the baseline during compression and improves processing speed by 68 to 112 times.
arXiv Detail & Related papers (2024-06-19T15:14:55Z) - Training LLMs over Neurally Compressed Text [55.11828645767342]
This paper explores the idea of training large language models (LLMs) over highly compressed text.<n>We propose Equal-Info Windows, a novel compression technique whereby text is segmented into blocks that each compress to the same bit length.<n>We demonstrate effective learning over neurally compressed text that improves with scale, and outperforms byte-level baselines by a wide margin on perplexity and inference speed benchmarks.
arXiv Detail & Related papers (2024-04-04T17:48:28Z) - LLMLingua-2: Data Distillation for Efficient and Faithful Task-Agnostic Prompt Compression [43.048684907893104]
This paper focuses on task-agnostic prompt compression for better generalizability and efficiency.
We formulate prompt compression as a token classification problem to guarantee the faithfulness of the compressed prompt to the original one.
Our approach leads to lower latency by explicitly learning the compression objective with smaller models such as XLM-RoBERTa-large and mBERT.
arXiv Detail & Related papers (2024-03-19T17:59:56Z) - Context Compression for Auto-regressive Transformers with Sentinel
Tokens [37.07722536907739]
We propose a plug-and-play approach that is able to incrementally compress the intermediate activation of a specified span of tokens into compact ones.
Experiments on both in-domain language modeling and zero-shot open-ended document generation demonstrate the advantage of our approach.
arXiv Detail & Related papers (2023-10-12T09:18:19Z) - DiffRate : Differentiable Compression Rate for Efficient Vision
Transformers [98.33906104846386]
Token compression aims to speed up large-scale vision transformers (e.g. ViTs) by pruning (dropping) or merging tokens.
DiffRate is a novel token compression method that has several appealing properties prior arts do not have.
arXiv Detail & Related papers (2023-05-29T10:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.