Optimizing Question Semantic Space for Dynamic Retrieval-Augmented Multi-hop Question Answering
- URL: http://arxiv.org/abs/2506.00491v1
- Date: Sat, 31 May 2025 09:57:07 GMT
- Title: Optimizing Question Semantic Space for Dynamic Retrieval-Augmented Multi-hop Question Answering
- Authors: Linhao Ye, Lang Yu, Zhikai Lei, Qin Chen, Jie Zhou, Liang He,
- Abstract summary: Q-DREAM consists of three key modules: (1) the Question Decomposition Module (QDM), which decomposes interdependent subquestions; (2) the Subquestion Dependency Module (SDOM), which models the relations of subquestions for better understanding; and (3) the Dynamic Passage Retrieval Module (DPRM), which aligns subquestions with relevant passages by optimizing the semantic embeddings.<n> Experimental results across various benchmarks demonstrate that Q-DREAM significantly outperforms existing RAG methods, achieving state-of-the-art performance in both in-domain and out-of-domain settings.
- Score: 28.09833765246606
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval-augmented generation (RAG) is usually integrated into large language models (LLMs) to mitigate hallucinations and knowledge obsolescence. Whereas,conventional one-step retrieve-and-read methods are insufficient for multi-hop question answering, facing challenges of retrieval semantic mismatching and the high cost in handling interdependent subquestions. In this paper, we propose Optimizing Question Semantic Space for Dynamic Retrieval-Augmented Multi-hop Question Answering (Q-DREAM). Q-DREAM consists of three key modules: (1) the Question Decomposition Module (QDM), which decomposes multi-hop questions into fine-grained subquestions; (2) the Subquestion Dependency Optimizer Module (SDOM), which models the interdependent relations of subquestions for better understanding; and (3) the Dynamic Passage Retrieval Module (DPRM), which aligns subquestions with relevant passages by optimizing the semantic embeddings. Experimental results across various benchmarks demonstrate that Q-DREAM significantly outperforms existing RAG methods, achieving state-of-the-art performance in both in-domain and out-of-domain settings. Notably, Q-DREAM also improves retrieval efficiency while maintaining high accuracy compared with recent baselines.
Related papers
- Resource-Friendly Dynamic Enhancement Chain for Multi-Hop Question Answering [21.077964610022313]
This work proposes a novel framework called DEC (Dynamic Enhancement Chain)<n> DEC first decomposes complex questions into logically coherent subquestions to form a hallucination-free reasoning chain.<n>It then iteratively refines these subquestions through context-aware rewriting to generate effective query formulations.
arXiv Detail & Related papers (2025-06-21T11:55:27Z) - MultiConIR: Towards multi-condition Information Retrieval [57.6405602406446]
We introduce MultiConIR, the first benchmark designed to evaluate retrieval models in multi-condition scenarios.<n>We propose three tasks to assess retrieval and reranking models on multi-condition robustness, monotonic relevance ranking, and query format sensitivity.
arXiv Detail & Related papers (2025-03-11T05:02:03Z) - MRAG: A Modular Retrieval Framework for Time-Sensitive Question Answering [3.117448929160824]
temporal relations and answering time-sensitive questions is a challenging task for question-answering systems powered by large language models (LLMs)<n>We introduce the TempRAGEval benchmark, which repurposes existing datasets by incorporating temporal perturbations and gold evidence labels.<n>On TempRAGEval, MRAG significantly outperforms baseline retrievers in retrieval performance, leading to further improvements in final answer accuracy.
arXiv Detail & Related papers (2024-12-20T03:58:27Z) - Benchmarking Multimodal Retrieval Augmented Generation with Dynamic VQA Dataset and Self-adaptive Planning Agent [92.5712549836791]
Multimodal Retrieval Augmented Generation (mRAG) plays an important role in mitigating the "hallucination" issue inherent in multimodal large language models (MLLMs)<n>We propose the first self-adaptive planning agent for multimodal retrieval, OmniSearch.
arXiv Detail & Related papers (2024-11-05T09:27:21Z) - EfficientRAG: Efficient Retriever for Multi-Hop Question Answering [52.64500643247252]
We introduce EfficientRAG, an efficient retriever for multi-hop question answering.
Experimental results demonstrate that EfficientRAG surpasses existing RAG methods on three open-domain multi-hop question-answering datasets.
arXiv Detail & Related papers (2024-08-08T06:57:49Z) - Retrieve, Summarize, Plan: Advancing Multi-hop Question Answering with an Iterative Approach [6.549143816134531]
We propose a novel iterative RAG method called ReSP, equipped with a dual-function summarizer.<n> Experimental results on the multi-hop question-answering HotpotQA and 2WikiMultihopQA demonstrate that our method significantly outperforms the state-of-the-art.
arXiv Detail & Related papers (2024-07-18T02:19:00Z) - Enhancing Multi-modal and Multi-hop Question Answering via Structured
Knowledge and Unified Retrieval-Generation [33.56304858796142]
Multi-modal multi-hop question answering involves answering a question by reasoning over multiple input sources from different modalities.
Existing methods often retrieve evidences separately and then use a language model to generate an answer based on the retrieved evidences.
We propose a Structured Knowledge and Unified Retrieval-Generation (RG) approach to address these issues.
arXiv Detail & Related papers (2022-12-16T18:12:04Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
Multi-hop Question Answering over Knowledge Graph(KGQA) aims to find the answer entities that are multiple hops away from the topic entities mentioned in a natural language question.
We propose UniKGQA, a novel approach for multi-hop KGQA task, by unifying retrieval and reasoning in both model architecture and parameter learning.
arXiv Detail & Related papers (2022-12-02T04:08:09Z) - Joint Passage Ranking for Diverse Multi-Answer Retrieval [56.43443577137929]
We study multi-answer retrieval, an under-explored problem that requires retrieving passages to cover multiple distinct answers for a question.
This task requires joint modeling of retrieved passages, as models should not repeatedly retrieve passages containing the same answer at the cost of missing a different valid answer.
In this paper, we introduce JPR, a joint passage retrieval model focusing on reranking. To model the joint probability of the retrieved passages, JPR makes use of an autoregressive reranker that selects a sequence of passages, equipped with novel training and decoding algorithms.
arXiv Detail & Related papers (2021-04-17T04:48:36Z) - Answering Any-hop Open-domain Questions with Iterative Document
Reranking [62.76025579681472]
We propose a unified QA framework to answer any-hop open-domain questions.
Our method consistently achieves performance comparable to or better than the state-of-the-art on both single-hop and multi-hop open-domain QA datasets.
arXiv Detail & Related papers (2020-09-16T04:31:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.