SafeTy Reasoning Elicitation Alignment for Multi-Turn Dialogues
- URL: http://arxiv.org/abs/2506.00668v1
- Date: Sat, 31 May 2025 18:38:23 GMT
- Title: SafeTy Reasoning Elicitation Alignment for Multi-Turn Dialogues
- Authors: Martin Kuo, Jianyi Zhang, Aolin Ding, Louis DiValentin, Amin Hass, Benjamin F Morris, Isaac Jacobson, Randolph Linderman, James Kiessling, Nicolas Ramos, Bhavna Gopal, Maziyar Baran Pouyan, Changwei Liu, Hai Li, Yiran Chen,
- Abstract summary: Malicious attackers can exploit large language models (LLMs) by engaging them in multi-turn dialogues.<n>We propose a novel defense mechanism: SafeTy Reasoning Elicitation Alignment for Multi-Turn Dialogues (STREAM)
- Score: 9.762621950740995
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Malicious attackers can exploit large language models (LLMs) by engaging them in multi-turn dialogues to achieve harmful objectives, posing significant safety risks to society. To address this challenge, we propose a novel defense mechanism: SafeTy Reasoning Elicitation Alignment for Multi-Turn Dialogues (STREAM). STREAM defends LLMs against multi-turn attacks while preserving their functional capabilities. Our approach involves constructing a human-annotated dataset, the Safety Reasoning Multi-turn Dialogues dataset, which is used to fine-tune a plug-and-play safety reasoning moderator. This model is designed to identify malicious intent hidden within multi-turn conversations and alert the target LLM of potential risks. We evaluate STREAM across multiple LLMs against prevalent multi-turn attack strategies. Experimental results demonstrate that our method significantly outperforms existing defense techniques, reducing the Attack Success Rate (ASR) by 51.2%, all while maintaining comparable LLM capability.
Related papers
- MIRAGE: Multimodal Immersive Reasoning and Guided Exploration for Red-Team Jailbreak Attacks [85.3303135160762]
MIRAGE is a novel framework that exploits narrative-driven context and role immersion to circumvent safety mechanisms in Multimodal Large Language Models.<n>It achieves state-of-the-art performance, improving attack success rates by up to 17.5% over the best baselines.<n>We demonstrate that role immersion and structured semantic reconstruction can activate inherent model biases, facilitating the model's spontaneous violation of ethical safeguards.
arXiv Detail & Related papers (2025-03-24T20:38:42Z) - Steering Dialogue Dynamics for Robustness against Multi-turn Jailbreaking Attacks [55.29301192316118]
Large language models (LLMs) are highly vulnerable to jailbreaking attacks.<n>We propose a safety steering framework grounded in safe control theory.<n>Our method achieves invariant safety at each turn of dialogue by learning a safety predictor.
arXiv Detail & Related papers (2025-02-28T21:10:03Z) - Reasoning-Augmented Conversation for Multi-Turn Jailbreak Attacks on Large Language Models [53.580928907886324]
Reasoning-Augmented Conversation is a novel multi-turn jailbreak framework.<n>It reformulates harmful queries into benign reasoning tasks.<n>We show that RACE achieves state-of-the-art attack effectiveness in complex conversational scenarios.
arXiv Detail & Related papers (2025-02-16T09:27:44Z) - Towards Robust Multimodal Large Language Models Against Jailbreak Attacks [24.491648943977605]
We introduce SafeMLLM, which alternates between an attack step for generating adversarial noise and a model updating step.<n>At the attack step, SafeMLLM generates adversarial perturbations through a newly proposed contrastive embedding attack (CoE-Attack)<n>We evaluate SafeMLLM across six MLLMs and six jailbreak methods spanning multiple modalities.
arXiv Detail & Related papers (2025-02-02T03:45:49Z) - Purple-teaming LLMs with Adversarial Defender Training [57.535241000787416]
We present Purple-teaming LLMs with Adversarial Defender training (PAD)
PAD is a pipeline designed to safeguard LLMs by novelly incorporating the red-teaming (attack) and blue-teaming (safety training) techniques.
PAD significantly outperforms existing baselines in both finding effective attacks and establishing a robust safe guardrail.
arXiv Detail & Related papers (2024-07-01T23:25:30Z) - Chain of Attack: a Semantic-Driven Contextual Multi-Turn attacker for LLM [27.046944831084776]
Large language models (LLMs) have achieved remarkable performance in various natural language processing tasks.
CoA is a semantic-driven contextual multi-turn attack method that adaptively adjusts the attack policy.
We show that CoA can effectively expose the vulnerabilities of LLMs, and outperform existing attack methods.
arXiv Detail & Related papers (2024-05-09T08:15:21Z) - Prompt Leakage effect and defense strategies for multi-turn LLM interactions [95.33778028192593]
Leakage of system prompts may compromise intellectual property and act as adversarial reconnaissance for an attacker.
We design a unique threat model which leverages the LLM sycophancy effect and elevates the average attack success rate (ASR) from 17.7% to 86.2% in a multi-turn setting.
We measure the mitigation effect of 7 black-box defense strategies, along with finetuning an open-source model to defend against leakage attempts.
arXiv Detail & Related papers (2024-04-24T23:39:58Z) - Speak Out of Turn: Safety Vulnerability of Large Language Models in Multi-turn Dialogue [10.101013733390532]
Large Language Models (LLMs) have been demonstrated to generate illegal or unethical responses.
This paper argues that humans could exploit multi-turn dialogue to induce LLMs into generating harmful information.
arXiv Detail & Related papers (2024-02-27T07:11:59Z) - Attack Prompt Generation for Red Teaming and Defending Large Language
Models [70.157691818224]
Large language models (LLMs) are susceptible to red teaming attacks, which can induce LLMs to generate harmful content.
We propose an integrated approach that combines manual and automatic methods to economically generate high-quality attack prompts.
arXiv Detail & Related papers (2023-10-19T06:15:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.