Common Inpainted Objects In-N-Out of Context
- URL: http://arxiv.org/abs/2506.00721v1
- Date: Sat, 31 May 2025 21:42:12 GMT
- Title: Common Inpainted Objects In-N-Out of Context
- Authors: Tianze Yang, Tyson Jordan, Ninghao Liu, Jin Sun,
- Abstract summary: Common Inpainted Objects In-N-Out of Context (COinCO) is a novel dataset addressing the scarcity of out-of-context examples in existing vision datasets.<n>By systematically replacing objects in COCO images through diffusion-based inpainting, we create 97,722 unique images featuring both contextually coherent and inconsistent scenes.
- Score: 21.387506141979188
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present Common Inpainted Objects In-N-Out of Context (COinCO), a novel dataset addressing the scarcity of out-of-context examples in existing vision datasets. By systematically replacing objects in COCO images through diffusion-based inpainting, we create 97,722 unique images featuring both contextually coherent and inconsistent scenes, enabling effective context learning. Each inpainted object is meticulously verified and categorized as in- or out-of-context through a multimodal large language model assessment. Our analysis reveals significant patterns in semantic priors that influence inpainting success across object categories. We demonstrate three key tasks enabled by COinCO: (1) training context classifiers that effectively determine whether existing objects belong in their context; (2) a novel Objects-from-Context prediction task that determines which new objects naturally belong in given scenes at both instance and clique levels, and (3) context-enhanced fake detection on state-of-the-art methods without fine-tuning. COinCO provides a controlled testbed with contextual variations, establishing a foundation for advancing context-aware visual understanding in computer vision and image forensics. Our code and data are at: https://github.com/YangTianze009/COinCO.
Related papers
- In Defense of Lazy Visual Grounding for Open-Vocabulary Semantic Segmentation [50.79940712523551]
We present lazy visual grounding, a two-stage approach of unsupervised object mask discovery followed by object grounding.
Our model requires no additional training yet shows great performance on five public datasets.
arXiv Detail & Related papers (2024-08-09T09:28:35Z) - Mitigating Object Dependencies: Improving Point Cloud Self-Supervised Learning through Object Exchange [50.45953583802282]
We introduce a novel self-supervised learning (SSL) strategy for point cloud scene understanding.
Our approach leverages both object patterns and contextual cues to produce robust features.
Our experiments demonstrate the superiority of our method over existing SSL techniques.
arXiv Detail & Related papers (2024-04-11T06:39:53Z) - Learning Scene Context Without Images [2.8184014933789365]
We introduce a novel approach to teach scene contextual knowledge to machines using an attention mechanism.
A distinctive aspect of the proposed approach is its reliance solely on labels from image datasets to teach scene context.
We show how scene-wide relationships among different objects can be learned using a self-attention mechanism.
arXiv Detail & Related papers (2023-11-18T07:27:25Z) - Learning Object-Language Alignments for Open-Vocabulary Object Detection [83.09560814244524]
We propose a novel open-vocabulary object detection framework directly learning from image-text pair data.
It enables us to train an open-vocabulary object detector on image-text pairs in a much simple and effective way.
arXiv Detail & Related papers (2022-11-27T14:47:31Z) - Context-driven Visual Object Recognition based on Knowledge Graphs [0.8701566919381223]
We propose an approach that enhances deep learning methods by using external contextual knowledge encoded in a knowledge graph.
We conduct a series of experiments to investigate the impact of different contextual views on the learned object representations for the same image dataset.
arXiv Detail & Related papers (2022-10-20T13:09:00Z) - DALL-E for Detection: Language-driven Context Image Synthesis for Object
Detection [18.276823176045525]
We propose a new paradigm for automatic context image generation at scale.
At the core of our approach lies utilizing an interplay between language description of context and language-driven image generation.
We demonstrate the advantages of our approach over the prior context image generation approaches on four object detection datasets.
arXiv Detail & Related papers (2022-06-20T06:43:17Z) - CoDo: Contrastive Learning with Downstream Background Invariance for
Detection [10.608660802917214]
We propose a novel object-level self-supervised learning method, called Contrastive learning with Downstream background invariance (CoDo)
The pretext task is converted to focus on instance location modeling for various backgrounds, especially for downstream datasets.
Experiments on MSCOCO demonstrate that the proposed CoDo with common backbones, ResNet50-FPN, yields strong transfer learning results for object detection.
arXiv Detail & Related papers (2022-05-10T01:26:15Z) - Discovering Objects that Can Move [55.743225595012966]
We study the problem of object discovery -- separating objects from the background without manual labels.
Existing approaches utilize appearance cues, such as color, texture, and location, to group pixels into object-like regions.
We choose to focus on dynamic objects -- entities that can move independently in the world.
arXiv Detail & Related papers (2022-03-18T21:13:56Z) - Context-LGM: Leveraging Object-Context Relation for Context-Aware Object
Recognition [48.5398871460388]
We propose a novel Contextual Latent Generative Model (Context-LGM), which considers the object-context relation and models it in a hierarchical manner.
To infer contextual features, we reformulate the objective function of Variational Auto-Encoder (VAE), where contextual features are learned as a posterior conditioned distribution on the object.
The effectiveness of our method is verified by state-of-the-art performance on two context-aware object recognition tasks.
arXiv Detail & Related papers (2021-10-08T11:31:58Z) - COBE: Contextualized Object Embeddings from Narrated Instructional Video [52.73710465010274]
We propose a new framework for learning Contextualized OBject Embeddings from automatically-transcribed narrations of instructional videos.
We leverage the semantic and compositional structure of language by training a visual detector to predict a contextualized word embedding of the object and its associated narration.
Our experiments show that our detector learns to predict a rich variety of contextual object information, and that it is highly effective in the settings of few-shot and zero-shot learning.
arXiv Detail & Related papers (2020-07-14T19:04:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.