Narrative Media Framing in Political Discourse
- URL: http://arxiv.org/abs/2506.00737v1
- Date: Sat, 31 May 2025 22:55:08 GMT
- Title: Narrative Media Framing in Political Discourse
- Authors: Yulia Otmakhova, Lea Frermann,
- Abstract summary: Narrative frames are a powerful way of conceptualizing and communicating complex, controversial ideas.<n>In this paper, we connect elements of narrativity with fundamental aspects of framing, and present a framework which formalizes and operationalizes such aspects.
- Score: 11.38723572165938
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Narrative frames are a powerful way of conceptualizing and communicating complex, controversial ideas, however automated frame analysis to date has mostly overlooked this framing device. In this paper, we connect elements of narrativity with fundamental aspects of framing, and present a framework which formalizes and operationalizes such aspects. We annotate and release a data set of news articles in the climate change domain, analyze the dominance of narrative frame components across political leanings, and test LLMs in their ability to predict narrative frames and their components. Finally, we apply our framework in an unsupervised way to elicit components of narrative framing in a second domain, the COVID-19 crisis, where our predictions are congruent with prior theoretical work showing the generalizability of our approach.
Related papers
- Retain or Reframe? A Computational Framework for the Analysis of Framing in News Articles and Reader Comments [11.976321200958262]
We present the first computational framework for large-scale analysis of framing across source content (news articles) and audience responses (reader comments)<n>Applying our framework across eleven topics and two news outlets, we find that frame reuse in comments correlates highly across outlets, while topic-specific patterns vary.
arXiv Detail & Related papers (2025-07-07T02:05:56Z) - Talking Point based Ideological Discourse Analysis in News Events [62.18747509565779]
We propose a framework motivated by the theory of ideological discourse analysis to analyze news articles related to real-world events.<n>Our framework represents the news articles using a relational structure - talking points, which captures the interaction between entities, their roles, and media frames along with a topic of discussion.<n>We evaluate our framework's ability to generate these perspectives through automated tasks - ideology and partisan classification tasks, supplemented by human validation.
arXiv Detail & Related papers (2025-04-10T02:52:34Z) - Multi-Modal Framing Analysis of News [41.39617209053842]
We present a method for conducting multi-modal, multi-label framing analysis at scale using large (vision-) language models.<n>We identify highly partisan framing of topics with issue-specific frame analysis found in prior qualitative work.<n>We demonstrate a method for doing scalable integrative framing analysis of both text and image in news, providing a more complete picture for understanding media bias.
arXiv Detail & Related papers (2025-03-26T19:51:33Z) - Media Framing through the Lens of Event-Centric Narratives [5.991851254194096]
We argue that to explain framing devices we have to look at the way narratives are constructed.
We show that our framework can be used to analyze framing in U.S. news for two different domains: immigration and gun control.
arXiv Detail & Related papers (2024-10-04T05:21:42Z) - Revisiting Conversation Discourse for Dialogue Disentanglement [88.3386821205896]
We propose enhancing dialogue disentanglement by taking full advantage of the dialogue discourse characteristics.
We develop a structure-aware framework to integrate the rich structural features for better modeling the conversational semantic context.
Our work has great potential to facilitate broader multi-party multi-thread dialogue applications.
arXiv Detail & Related papers (2023-06-06T19:17:47Z) - Conflicts, Villains, Resolutions: Towards models of Narrative Media
Framing [19.589945994234075]
We revisit a widely used conceptualization of framing from the communication sciences which explicitly captures elements of narratives.
We adapt an effective annotation paradigm that breaks a complex annotation task into a series of simpler binary questions.
We explore automatic multi-label prediction of our frames with supervised and semi-supervised approaches.
arXiv Detail & Related papers (2023-06-03T08:50:13Z) - Revise and Resubmit: An Intertextual Model of Text-based Collaboration
in Peer Review [52.359007622096684]
Peer review is a key component of the publishing process in most fields of science.
Existing NLP studies focus on the analysis of individual texts.
editorial assistance often requires modeling interactions between pairs of texts.
arXiv Detail & Related papers (2022-04-22T16:39:38Z) - Towards Identifying Social Bias in Dialog Systems: Frame, Datasets, and
Benchmarks [95.29345070102045]
In this paper, we focus our investigation on social bias detection of dialog safety problems.
We first propose a novel Dial-Bias Frame for analyzing the social bias in conversations pragmatically.
We introduce CDail-Bias dataset that is the first well-annotated Chinese social bias dialog dataset.
arXiv Detail & Related papers (2022-02-16T11:59:29Z) - Discourse Analysis for Evaluating Coherence in Video Paragraph Captions [99.37090317971312]
We are exploring a novel discourse based framework to evaluate the coherence of video paragraphs.
Central to our approach is the discourse representation of videos, which helps in modeling coherence of paragraphs conditioned on coherence of videos.
Our experiment results have shown that the proposed framework evaluates coherence of video paragraphs significantly better than all the baseline methods.
arXiv Detail & Related papers (2022-01-17T04:23:08Z) - Comprehensive Studies for Arbitrary-shape Scene Text Detection [78.50639779134944]
We propose a unified framework for the bottom-up based scene text detection methods.
Under the unified framework, we ensure the consistent settings for non-core modules.
With the comprehensive investigations and elaborate analyses, it reveals the advantages and disadvantages of previous models.
arXiv Detail & Related papers (2021-07-25T13:18:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.