Unlearning Inversion Attacks for Graph Neural Networks
- URL: http://arxiv.org/abs/2506.00808v1
- Date: Sun, 01 Jun 2025 03:23:04 GMT
- Title: Unlearning Inversion Attacks for Graph Neural Networks
- Authors: Jiahao Zhang, Yilong Wang, Zhiwei Zhang, Xiaorui Liu, Suhang Wang,
- Abstract summary: We introduce the graph unlearning inversion attack: given only black-box access to an unlearned GNN and partial graph knowledge, can an adversary reconstruct the removed edges?<n>We identify two key challenges: varying probability-similarity thresholds for unlearned versus retained edges, and the difficulty of locating unlearned edge endpoints, and address them with TrendAttack.<n>Experiments on four real-world datasets demonstrate that TrendAttack significantly outperforms state-of-the-art GNN membership inference baselines, exposing a critical privacy vulnerability in current graph unlearning methods.
- Score: 37.7189834578513
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph unlearning methods aim to efficiently remove the impact of sensitive data from trained GNNs without full retraining, assuming that deleted information cannot be recovered. In this work, we challenge this assumption by introducing the graph unlearning inversion attack: given only black-box access to an unlearned GNN and partial graph knowledge, can an adversary reconstruct the removed edges? We identify two key challenges: varying probability-similarity thresholds for unlearned versus retained edges, and the difficulty of locating unlearned edge endpoints, and address them with TrendAttack. First, we derive and exploit the confidence pitfall, a theoretical and empirical pattern showing that nodes adjacent to unlearned edges exhibit a large drop in model confidence. Second, we design an adaptive prediction mechanism that applies different similarity thresholds to unlearned and other membership edges. Our framework flexibly integrates existing membership inference techniques and extends them with trend features. Experiments on four real-world datasets demonstrate that TrendAttack significantly outperforms state-of-the-art GNN membership inference baselines, exposing a critical privacy vulnerability in current graph unlearning methods.
Related papers
- Provable Robustness of (Graph) Neural Networks Against Data Poisoning and Backdoor Attacks [50.87615167799367]
We certify Graph Neural Networks (GNNs) against poisoning attacks, including backdoors, targeting the node features of a given graph.
Our framework provides fundamental insights into the role of graph structure and its connectivity on the worst-case behavior of convolution-based and PageRank-based GNNs.
arXiv Detail & Related papers (2024-07-15T16:12:51Z) - ADEdgeDrop: Adversarial Edge Dropping for Robust Graph Neural Networks [53.41164429486268]
Graph Neural Networks (GNNs) have exhibited the powerful ability to gather graph-structured information from neighborhood nodes.
The performance of GNNs is limited by poor generalization and fragile robustness caused by noisy and redundant graph data.
We propose a novel adversarial edge-dropping method (ADEdgeDrop) that leverages an adversarial edge predictor guiding the removal of edges.
arXiv Detail & Related papers (2024-03-14T08:31:39Z) - Unlink to Unlearn: Simplifying Edge Unlearning in GNNs [24.987140675476464]
Unlearning in Graph Neural Networks (GNNs) has emerged as a prominent research frontier in academia.
Our research focuses on edge unlearning, a process of particular relevance to real-world applications.
We develop textbfUnlink to Unlearn, a novel method that facilitates unlearning exclusively through unlinking the forget edges from graph structure.
arXiv Detail & Related papers (2024-02-16T13:58:23Z) - GraphGuard: Detecting and Counteracting Training Data Misuse in Graph
Neural Networks [69.97213941893351]
The emergence of Graph Neural Networks (GNNs) in graph data analysis has raised critical concerns about data misuse during model training.
Existing methodologies address either data misuse detection or mitigation, and are primarily designed for local GNN models.
This paper introduces a pioneering approach called GraphGuard, to tackle these challenges.
arXiv Detail & Related papers (2023-12-13T02:59:37Z) - Curriculum Learning for Graph Neural Networks: Which Edges Should We
Learn First [13.37867275976255]
We propose a novel strategy to incorporate more edges into training according to their difficulty from easy to hard.
We demonstrate the strength of our proposed method in improving the generalization ability and robustness of learned representations.
arXiv Detail & Related papers (2023-10-28T15:35:34Z) - Model Inversion Attacks against Graph Neural Networks [65.35955643325038]
We study model inversion attacks against Graph Neural Networks (GNNs)
In this paper, we present GraphMI to infer the private training graph data.
Our experimental results show that such defenses are not sufficiently effective and call for more advanced defenses against privacy attacks.
arXiv Detail & Related papers (2022-09-16T09:13:43Z) - Training Robust Graph Neural Networks with Topology Adaptive Edge
Dropping [116.26579152942162]
Graph neural networks (GNNs) are processing architectures that exploit graph structural information to model representations from network data.
Despite their success, GNNs suffer from sub-optimal generalization performance given limited training data.
This paper proposes Topology Adaptive Edge Dropping to improve generalization performance and learn robust GNN models.
arXiv Detail & Related papers (2021-06-05T13:20:36Z) - GraphMI: Extracting Private Graph Data from Graph Neural Networks [59.05178231559796]
We present textbfGraph textbfModel textbfInversion attack (GraphMI), which aims to extract private graph data of the training graph by inverting GNN.
Specifically, we propose a projected gradient module to tackle the discreteness of graph edges while preserving the sparsity and smoothness of graph features.
We design a graph auto-encoder module to efficiently exploit graph topology, node attributes, and target model parameters for edge inference.
arXiv Detail & Related papers (2021-06-05T07:07:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.