Improve MLLM Benchmark Efficiency through Interview
- URL: http://arxiv.org/abs/2506.00883v1
- Date: Sun, 01 Jun 2025 07:51:15 GMT
- Title: Improve MLLM Benchmark Efficiency through Interview
- Authors: Farong Wen, Yijin Guo, Junying Wang, Jiaohao Xiao, Yingjie Zhou, Chunyi Li, Zicheng Zhang, Guangtao Zhai,
- Abstract summary: Full-coverage Q&A testing on large-scale data is resource-intensive and time-consuming.<n>We propose the MLLM Interview strategy, which aims to quickly obtain MLLM performance metrics by quizzing fewer question.
- Score: 32.557448123464226
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid development of Multimodal Large Language Models (MLLM) has led to a wide range of MLLM applications, and a number of benchmark datasets have sprung up in order to assess MLLM abilities. However, full-coverage Q&A testing on large-scale data is resource-intensive and time-consuming. To address this issue, we propose the MLLM Interview (MITV) strategy, which aims to quickly obtain MLLM performance metrics by quizzing fewer question. First, First, we constructed the interview dataset, which was built on an existing MLLM assessment dataset, by adding difficulty labels based on the performance of some typical MLLMs in this dataset. Second, we propose an MLLM Interview strategy, which obtains an initial performance situation of the large model by quizzing a small number of topics and then continuously tries to test the model's limits. Through extensive experiments, the result shows that the MITV strategy proposed in this paper performs well on MLLM benchmark datasets, and it is able to obtain the model evaluation capability faster through a small number of questions and answers.
Related papers
- LLM-as-an-Interviewer: Beyond Static Testing Through Dynamic LLM Evaluation [24.103034843158717]
We introduce LLM-as-an-Interviewer, a novel paradigm for evaluating large language models (LLMs)<n>This approach leverages multi-turn interactions where the interviewer actively provides feedback on responses and poses follow-up questions to the evaluated LLM.<n>We apply the framework to evaluate six models on the MATH and DepthQA tasks.
arXiv Detail & Related papers (2024-12-10T15:00:32Z) - Revisiting Multi-Modal LLM Evaluation [29.094387692681337]
We pioneer evaluating recent MLLMs (LLaVA 1.5, LLaVA-NeXT, BLIP2, InstructBLIP, GPT-4V, and GPT-4o) on datasets designed to address weaknesses in earlier ones.
Our code is integrated into the widely used LAVIS framework for MLLM evaluation, enabling the rapid assessment of future MLLMs.
arXiv Detail & Related papers (2024-08-09T20:55:46Z) - The Synergy between Data and Multi-Modal Large Language Models: A Survey from Co-Development Perspective [53.48484062444108]
We find that the development of models and data is not two separate paths but rather interconnected.
On the one hand, vaster and higher-quality data contribute to better performance of MLLMs; on the other hand, MLLMs can facilitate the development of data.
To promote the data-model co-development for MLLM community, we systematically review existing works related to MLLMs from the data-model co-development perspective.
arXiv Detail & Related papers (2024-07-11T15:08:11Z) - Efficient Multimodal Large Language Models: A Survey [60.7614299984182]
Multimodal Large Language Models (MLLMs) have demonstrated remarkable performance in tasks such as visual question answering, visual understanding and reasoning.
The extensive model size and high training and inference costs have hindered the widespread application of MLLMs in academia and industry.
This survey provides a comprehensive and systematic review of the current state of efficient MLLMs.
arXiv Detail & Related papers (2024-05-17T12:37:10Z) - SEED-Bench-2: Benchmarking Multimodal Large Language Models [67.28089415198338]
Multimodal large language models (MLLMs) have recently demonstrated exceptional capabilities in generating not only texts but also images given interleaved multimodal inputs.
SEED-Bench-2 comprises 24K multiple-choice questions with accurate human annotations, which spans 27 dimensions.
We evaluate the performance of 23 prominent open-source MLLMs and summarize valuable observations.
arXiv Detail & Related papers (2023-11-28T05:53:55Z) - MLLM-Bench: Evaluating Multimodal LLMs with Per-sample Criteria [49.500322937449326]
Multimodal large language models (MLLMs) have broadened the scope of AI applications.
Existing automatic evaluation methodologies for MLLMs are mainly limited in evaluating queries without considering user experiences.
We propose a new evaluation paradigm for MLLMs, which is evaluating MLLMs with per-sample criteria using potent MLLM as the judge.
arXiv Detail & Related papers (2023-11-23T12:04:25Z) - MLLM-DataEngine: An Iterative Refinement Approach for MLLM [62.30753425449056]
We propose a novel closed-loop system that bridges data generation, model training, and evaluation.
Within each loop, the MLLM-DataEngine first analyze the weakness of the model based on the evaluation results.
For targeting, we propose an Adaptive Bad-case Sampling module, which adjusts the ratio of different types of data.
For quality, we resort to GPT-4 to generate high-quality data with each given data type.
arXiv Detail & Related papers (2023-08-25T01:41:04Z) - MME: A Comprehensive Evaluation Benchmark for Multimodal Large Language Models [73.86954509967416]
Multimodal Large Language Model (MLLM) relies on the powerful LLM to perform multimodal tasks.
This paper presents the first comprehensive MLLM Evaluation benchmark MME.
It measures both perception and cognition abilities on a total of 14 subtasks.
arXiv Detail & Related papers (2023-06-23T09:22:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.