General-purpose audio representation learning for real-world sound scenes
- URL: http://arxiv.org/abs/2506.00934v1
- Date: Sun, 01 Jun 2025 09:56:33 GMT
- Title: General-purpose audio representation learning for real-world sound scenes
- Authors: Goksenin Yuksel, Marcel van Gerven, Kiki van der Heijden,
- Abstract summary: We propose a novel self-supervised training approach for General-Purpose, Real-world Audio Models (GRAMs)<n>The GRAM training approach enables robust spatial audio representation learning for naturalistic, noisy sound scenes.<n>Results show that our approach minimizes the performance gap between dry, non-spatial, single-source sound scenes and naturalistic sound scenes.
- Score: 1.37621344207686
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While audio foundation models perform well on myriad of tasks from sound classification to speech analysis, these models are trained and tested on dry, non-spatial, single-source audio clips. This limits their success in real-world situations and results in spatially unaware audio embeddings. To address these limitations, we propose a novel self-supervised training approach for General-Purpose, Real-world Audio Models (GRAMs). The GRAM training approach enables robust spatial audio representation learning for naturalistic, noisy sound scenes and can be applied to any masking-based deep learning model. We demonstrate the success of our approach by training two state-of-the-art models, one with a transformer and one with a mamba backbone. We assess the quality of the extracted audio representations from GRAMs using the original version of the HEAR benchmark, a newly synthesized, naturalistic version of the HEAR benchmark, and novel sound localization tasks based on HEAR benchmark datasets. The results show that our approach minimizes the performance gap between dry, non-spatial, single-source sound scenes and naturalistic sound scenes for crucial tasks such as auditory scene analysis, outperforming existing state-of-the-art audio foundation models at a fraction of the training steps. Moreover, GRAMs show state-of-the-art performance on sound localization tasks, exceeding even supervised sound localization models. In sum, the proposed approach represents a significant advancement towards robust audio foundation models for real-world applications with state-of-the-art performance on naturalistic sound scenes as well as spatial audio representation learning.
Related papers
- USAD: Universal Speech and Audio Representation via Distillation [56.91647396619358]
Universal Speech and Audio Distillation (USAD) is a unified approach to audio representation learning.<n>USAD integrates diverse audio types - speech, sound, and music - into a single model.
arXiv Detail & Related papers (2025-06-23T17:02:00Z) - Seeing Speech and Sound: Distinguishing and Locating Audios in Visual Scenes [16.530816405275715]
We present a unified model capable of simultaneously grounding both spoken language and non-speech sounds within a visual scene.<n>Existing approaches are typically limited to handling either speech or non-speech sounds independently, or at best, together but sequentially without mixing.
arXiv Detail & Related papers (2025-03-24T16:56:04Z) - AV-GS: Learning Material and Geometry Aware Priors for Novel View Acoustic Synthesis [62.33446681243413]
view acoustic synthesis aims to render audio at any target viewpoint, given a mono audio emitted by a sound source at a 3D scene.<n>Existing methods have proposed NeRF-based implicit models to exploit visual cues as a condition for synthesizing audio.<n>We propose a novel Audio-Visual Gaussian Splatting (AV-GS) model to characterize the entire scene environment.<n>Experiments validate the superiority of our AV-GS over existing alternatives on the real-world RWAS and simulation-based SoundSpaces datasets.
arXiv Detail & Related papers (2024-06-13T08:34:12Z) - Audio Mamba: Selective State Spaces for Self-Supervised Audio Representations [16.269123889392343]
This work proposes Audio Mamba, a selective state space model for learning general-purpose audio representations.
Empirical results on ten diverse audio recognition downstream tasks show that the proposed models consistently outperform comparable self-supervised audio spectrogram transformer baselines.
arXiv Detail & Related papers (2024-06-04T10:19:14Z) - Self-Supervised Visual Acoustic Matching [63.492168778869726]
Acoustic matching aims to re-synthesize an audio clip to sound as if it were recorded in a target acoustic environment.
We propose a self-supervised approach to visual acoustic matching where training samples include only the target scene image and audio.
Our approach jointly learns to disentangle room acoustics and re-synthesize audio into the target environment, via a conditional GAN framework and a novel metric.
arXiv Detail & Related papers (2023-07-27T17:59:59Z) - AVFormer: Injecting Vision into Frozen Speech Models for Zero-Shot
AV-ASR [79.21857972093332]
We present AVFormer, a method for augmenting audio-only models with visual information, at the same time performing lightweight domain adaptation.
We show that these can be trained on a small amount of weakly labelled video data with minimum additional training time and parameters.
We also introduce a simple curriculum scheme during training which we show is crucial to enable the model to jointly process audio and visual information effectively.
arXiv Detail & Related papers (2023-03-29T07:24:28Z) - Leveraging Pre-trained AudioLDM for Sound Generation: A Benchmark Study [33.10311742703679]
We make the first attempt to investigate the benefits of pre-training on sound generation with AudioLDM.
Our study demonstrates the advantages of the pre-trained AudioLDM, especially in data-scarcity scenarios.
We benchmark the sound generation task on various frequently-used datasets.
arXiv Detail & Related papers (2023-03-07T12:49:45Z) - AV-NeRF: Learning Neural Fields for Real-World Audio-Visual Scene
Synthesis [61.07542274267568]
We study a new task -- real-world audio-visual scene synthesis -- and a first-of-its-kind NeRF-based approach for multimodal learning.
We propose an acoustic-aware audio generation module that integrates prior knowledge of audio propagation into NeRF.
We present a coordinate transformation module that expresses a view direction relative to the sound source, enabling the model to learn sound source-centric acoustic fields.
arXiv Detail & Related papers (2023-02-04T04:17:19Z) - ASiT: Local-Global Audio Spectrogram vIsion Transformer for Event
Classification [42.95038619688867]
ASiT is a novel self-supervised learning framework that captures local and global contextual information by employing group masked model learning and self-distillation.
We evaluate our pretrained models on both audio and speech classification tasks, including audio event classification, keyword spotting, and speaker identification.
arXiv Detail & Related papers (2022-11-23T18:21:09Z) - Curriculum Audiovisual Learning [113.20920928789867]
We present a flexible audiovisual model that introduces a soft-clustering module as the audio and visual content detector.
To ease the difficulty of audiovisual learning, we propose a novel learning strategy that trains the model from simple to complex scene.
We show that our localization model significantly outperforms existing methods, based on which we show comparable performance in sound separation without referring external visual supervision.
arXiv Detail & Related papers (2020-01-26T07:08:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.