Less is More: Local Intrinsic Dimensions of Contextual Language Models
- URL: http://arxiv.org/abs/2506.01034v1
- Date: Sun, 01 Jun 2025 14:30:46 GMT
- Title: Less is More: Local Intrinsic Dimensions of Contextual Language Models
- Authors: Benjamin Matthias Ruppik, Julius von Rohrscheidt, Carel van Niekerk, Michael Heck, Renato Vukovic, Shutong Feng, Hsien-chin Lin, Nurul Lubis, Bastian Rieck, Marcus Zibrowius, Milica Gašić,
- Abstract summary: We introduce a novel perspective based on the geometric properties of contextual latent embeddings to study the effects of training and fine-tuning.<n>We show that the local dimensions provide insights into the model's training dynamics and generalization ability.<n>Our experiments suggest configuring a practical: reductions in the mean local dimension tend to accompany and predict subsequent performance gains.
- Score: 13.561226514150695
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Understanding the internal mechanisms of large language models (LLMs) remains a challenging and complex endeavor. Even fundamental questions, such as how fine-tuning affects model behavior, often require extensive empirical evaluation. In this paper, we introduce a novel perspective based on the geometric properties of contextual latent embeddings to study the effects of training and fine-tuning. To that end, we measure the local dimensions of a contextual language model's latent space and analyze their shifts during training and fine-tuning. We show that the local dimensions provide insights into the model's training dynamics and generalization ability. Specifically, the mean of the local dimensions predicts when the model's training capabilities are exhausted, as exemplified in a dialogue state tracking task, overfitting, as demonstrated in an emotion recognition task, and grokking, as illustrated with an arithmetic task. Furthermore, our experiments suggest a practical heuristic: reductions in the mean local dimension tend to accompany and predict subsequent performance gains. Through this exploration, we aim to provide practitioners with a deeper understanding of the implications of fine-tuning on embedding spaces, facilitating informed decisions when configuring models for specific applications. The results of this work contribute to the ongoing discourse on the interpretability, adaptability, and generalizability of LLMs by bridging the gap between intrinsic model mechanisms and geometric properties in the respective embeddings.
Related papers
- Evaluating Generalization and Representation Stability in Small LMs via Prompting, Fine-Tuning and Out-of-Distribution Prompts [2.377892000761193]
We investigate the generalization capabilities of small language models under two popular adaptation paradigms: few-shot prompting and supervised fine-tuning.<n>Our findings highlight critical differences in how small models internalize and generalize knowledge under different adaptation strategies.
arXiv Detail & Related papers (2025-06-16T01:44:26Z) - Towards Locally Explaining Prediction Behavior via Gradual Interventions and Measuring Property Gradients [9.961090778082285]
Deep learning models achieve high predictive performance but lack intrinsic interpretability.<n>We introduce a novel framework for local interventional explanations by leveraging recent advances in image-to-image editing models.<n>Our approach performs gradual interventions on semantic properties to quantify the corresponding impact on a model's predictions.
arXiv Detail & Related papers (2025-03-07T13:50:37Z) - Can Large Language Models Understand Context? [17.196362853457412]
This paper introduces a context understanding benchmark by adapting existing datasets to suit the evaluation of generative models.
Experimental results indicate that pre-trained dense models struggle with understanding more nuanced contextual features when compared to state-of-the-art fine-tuned models.
As LLM compression holds growing significance in both research and real-world applications, we assess the context understanding of quantized models under in-context-learning settings.
arXiv Detail & Related papers (2024-02-01T18:55:29Z) - Understanding the Inner Workings of Language Models Through
Representation Dissimilarity [5.987278280211877]
representation dissimilarity measures are functions that measure the extent to which two model's internal representations differ.
Our results suggest that dissimilarity measures are a promising set of tools for shedding light on the inner workings of language models.
arXiv Detail & Related papers (2023-10-23T14:46:20Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
Large language models (LLMs) have demonstrated impressive capabilities in natural language processing.
This paper introduces a taxonomy of explainability techniques and provides a structured overview of methods for explaining Transformer-based language models.
arXiv Detail & Related papers (2023-09-02T22:14:26Z) - Foundational Models Defining a New Era in Vision: A Survey and Outlook [151.49434496615427]
Vision systems to see and reason about the compositional nature of visual scenes are fundamental to understanding our world.
The models learned to bridge the gap between such modalities coupled with large-scale training data facilitate contextual reasoning, generalization, and prompt capabilities at test time.
The output of such models can be modified through human-provided prompts without retraining, e.g., segmenting a particular object by providing a bounding box, having interactive dialogues by asking questions about an image or video scene or manipulating the robot's behavior through language instructions.
arXiv Detail & Related papers (2023-07-25T17:59:18Z) - SINC: Self-Supervised In-Context Learning for Vision-Language Tasks [64.44336003123102]
We propose a framework to enable in-context learning in large language models.
A meta-model can learn on self-supervised prompts consisting of tailored demonstrations.
Experiments show that SINC outperforms gradient-based methods in various vision-language tasks.
arXiv Detail & Related papers (2023-07-15T08:33:08Z) - Inverse Dynamics Pretraining Learns Good Representations for Multitask
Imitation [66.86987509942607]
We evaluate how such a paradigm should be done in imitation learning.
We consider a setting where the pretraining corpus consists of multitask demonstrations.
We argue that inverse dynamics modeling is well-suited to this setting.
arXiv Detail & Related papers (2023-05-26T14:40:46Z) - Competence-Based Analysis of Language Models [21.43498764977656]
CALM (Competence-based Analysis of Language Models) is designed to investigate LLM competence in the context of specific tasks.<n>We develop a new approach for performing causal probing interventions using gradient-based adversarial attacks.<n>We carry out a case study of CALM using these interventions to analyze and compare LLM competence across a variety of lexical inference tasks.
arXiv Detail & Related papers (2023-03-01T08:53:36Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
Large language models (LLMs) have led to a series of breakthroughs in natural language processing (NLP)
What further sets these models apart is the massive amounts of world knowledge they internalize during pretraining.
How the model's world knowledge interacts with the factual information presented in the context remains under explored.
arXiv Detail & Related papers (2022-11-09T18:58:29Z) - Did the Cat Drink the Coffee? Challenging Transformers with Generalized
Event Knowledge [59.22170796793179]
Transformers Language Models (TLMs) were tested on a benchmark for the textitdynamic estimation of thematic fit
Our results show that TLMs can reach performances that are comparable to those achieved by SDM.
However, additional analysis consistently suggests that TLMs do not capture important aspects of event knowledge.
arXiv Detail & Related papers (2021-07-22T20:52:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.