AI4Contracts: LLM & RAG-Powered Encoding of Financial Derivative Contracts
- URL: http://arxiv.org/abs/2506.01063v1
- Date: Sun, 01 Jun 2025 16:05:00 GMT
- Title: AI4Contracts: LLM & RAG-Powered Encoding of Financial Derivative Contracts
- Authors: Maruf Ahmed Mridul, Ian Sloyan, Aparna Gupta, Oshani Seneviratne,
- Abstract summary: Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG) are reshaping how AI systems extract and organize information from unstructured text.<n>We introduce CDMizer, a template-driven, LLM, and RAG-based framework for structured text transformation.
- Score: 1.3060230641655135
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG) are reshaping how AI systems extract and organize information from unstructured text. A key challenge is designing AI methods that can incrementally extract, structure, and validate information while preserving hierarchical and contextual relationships. We introduce CDMizer, a template-driven, LLM, and RAG-based framework for structured text transformation. By leveraging depth-based retrieval and hierarchical generation, CDMizer ensures a controlled, modular process that aligns generated outputs with predefined schema. Its template-driven approach guarantees syntactic correctness, schema adherence, and improved scalability, addressing key limitations of direct generation methods. Additionally, we propose an LLM-powered evaluation framework to assess the completeness and accuracy of structured representations. Demonstrated in the transformation of Over-the-Counter (OTC) financial derivative contracts into the Common Domain Model (CDM), CDMizer establishes a scalable foundation for AI-driven document understanding, structured synthesis, and automated validation in broader contexts.
Related papers
- SAFT: Structure-Aware Fine-Tuning of LLMs for AMR-to-Text Generation [50.277959544420455]
SAFT is a structure-aware fine-tuning approach that injects graph topology into pretrained language models.<n>We compute direction-sensitive positional encodings from the magnetic Laplacian of transformed AMRs.<n> SAFT sets a new state-of-the-art on AMR 3.0 with a 3.5 BLEU improvement over baselines.
arXiv Detail & Related papers (2025-07-15T18:12:57Z) - Large Language Models are Good Relational Learners [55.40941576497973]
We introduce Rel-LLM, a novel architecture that utilizes a graph neural network (GNN)- based encoder to generate structured relational prompts for large language models (LLMs)<n>Unlike traditional text-based serialization approaches, our method preserves the inherent relational structure of databases while enabling LLMs to process and reason over complex entity relationships.
arXiv Detail & Related papers (2025-06-06T04:07:55Z) - Structured Prompting and Feedback-Guided Reasoning with LLMs for Data Interpretation [0.0]
Large language models (LLMs) have demonstrated remarkable capabilities in natural language understanding and task generalization.<n>This paper introduces the STROT Framework, a method for structured prompting and feedback-driven transformation logic generation.
arXiv Detail & Related papers (2025-05-03T00:05:01Z) - SemCORE: A Semantic-Enhanced Generative Cross-Modal Retrieval Framework with MLLMs [70.79124435220695]
We propose a novel unified Semantic-enhanced generative Cross-mOdal REtrieval framework (SemCORE)<n>We first construct a Structured natural language IDentifier (SID) that effectively aligns target identifiers with generative models optimized for natural language comprehension and generation.<n>We then introduce a Generative Semantic Verification (GSV) strategy enabling fine-grained target discrimination.
arXiv Detail & Related papers (2025-04-17T17:59:27Z) - Generating Structured Plan Representation of Procedures with LLMs [5.623006055588189]
We introduce SOP Structuring ( SOPStruct), a novel approach to transform SOPs into structured representations.<n> SOPStruct produces a standardized representation of SOPs across different domains, reduces cognitive load, and improves user comprehension.<n>Our research highlights the transformative potential of Large Language Models to streamline process modeling.
arXiv Detail & Related papers (2025-03-28T22:38:24Z) - AssertionForge: Enhancing Formal Verification Assertion Generation with Structured Representation of Specifications and RTL [6.062811197376495]
We propose a novel approach that constructs a Knowledge Graph (KG) from both specifications and RTL.<n>We create an initial KG from the specification and then systematically fuse it with information extracted from the RTL code, resulting in a unified, comprehensive KG.<n> Experiments on four designs demonstrate that our method significantly enhances SVA quality over prior methods.
arXiv Detail & Related papers (2025-03-24T21:53:37Z) - $\texttt{SEM-CTRL}$: Semantically Controlled Decoding [53.86639808659575]
$texttSEM-CTRL$ is a unified approach that enforces rich context-sensitive constraints and task- and instance-specific semantics directly on an LLM decoder.<n>texttSEM-CTRL$ allows small pre-trained LLMs to efficiently outperform larger variants and state-of-the-art reasoning models.
arXiv Detail & Related papers (2025-03-03T18:33:46Z) - HPT++: Hierarchically Prompting Vision-Language Models with Multi-Granularity Knowledge Generation and Improved Structure Modeling [39.14392943549792]
We propose a novel approach called Hierarchical Prompt Tuning (HPT), enabling simultaneous modeling of both structured and conventional linguistic knowledge.
We introduce a relationship-guided attention module to capture pair-wise associations among entities and attributes for low-level prompt learning.
By incorporating high-level and global-level prompts modeling overall semantics, the proposed hierarchical structure forges cross-level interlinks and empowers the model to handle more complex and long-term relationships.
arXiv Detail & Related papers (2024-08-27T06:50:28Z) - Contextualization Distillation from Large Language Model for Knowledge
Graph Completion [51.126166442122546]
We introduce the Contextualization Distillation strategy, a plug-in-and-play approach compatible with both discriminative and generative KGC frameworks.
Our method begins by instructing large language models to transform compact, structural triplets into context-rich segments.
Comprehensive evaluations across diverse datasets and KGC techniques highlight the efficacy and adaptability of our approach.
arXiv Detail & Related papers (2024-01-28T08:56:49Z) - Towards Auto-Modeling of Formal Verification for NextG Protocols: A
Multimodal cross- and self-attention Large Language Model Approach [3.9155346446573502]
This paper introduces Auto-modeling of Formal Verification with Real-world Prompting for 5G and NextG protocols (AVRE)
AVRE is a novel system designed for the formal verification of Next Generation (NextG) communication protocols.
arXiv Detail & Related papers (2023-12-28T20:41:24Z) - Autoregressive Structured Prediction with Language Models [73.11519625765301]
We describe an approach to model structures as sequences of actions in an autoregressive manner with PLMs.
Our approach achieves the new state-of-the-art on all the structured prediction tasks we looked at.
arXiv Detail & Related papers (2022-10-26T13:27:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.