Flexible Mixed Precision Quantization for Learned Image Compression
- URL: http://arxiv.org/abs/2506.01221v1
- Date: Mon, 02 Jun 2025 00:12:50 GMT
- Title: Flexible Mixed Precision Quantization for Learned Image Compression
- Authors: Md Adnan Faisal Hossain, Zhihao Duan, Fengqing Zhu,
- Abstract summary: We propose a Flexible Mixed Precision Quantization (FMPQ) method that assigns different bit-widths to different layers of the quantized network.<n>We also introduce an adaptive search algorithm which reduces the time-complexity of searching for the desired distribution of quantization bit-widths.
- Score: 4.847449762378203
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Despite its improvements in coding performance compared to traditional codecs, Learned Image Compression (LIC) suffers from large computational costs for storage and deployment. Model quantization offers an effective solution to reduce the computational complexity of LIC models. However, most existing works perform fixed-precision quantization which suffers from sub-optimal utilization of resources due to the varying sensitivity to quantization of different layers of a neural network. In this paper, we propose a Flexible Mixed Precision Quantization (FMPQ) method that assigns different bit-widths to different layers of the quantized network using the fractional change in rate-distortion loss as the bit-assignment criterion. We also introduce an adaptive search algorithm which reduces the time-complexity of searching for the desired distribution of quantization bit-widths given a fixed model size. Evaluation of our method shows improved BD-Rate performance under similar model size constraints compared to other works on quantization of LIC models. We have made the source code available at gitlab.com/viper-purdue/fmpq.
Related papers
- Reducing Storage of Pretrained Neural Networks by Rate-Constrained Quantization and Entropy Coding [56.066799081747845]
The ever-growing size of neural networks poses serious challenges on resource-constrained devices.<n>We propose a novel post-training compression framework that combines rate-aware quantization with entropy coding.<n>Our method allows for very fast decoding and is compatible with arbitrary quantization grids.
arXiv Detail & Related papers (2025-05-24T15:52:49Z) - Multi-Scale Invertible Neural Network for Wide-Range Variable-Rate Learned Image Compression [90.59962443790593]
In this paper, we present a variable-rate image compression model based on invertible transform to overcome limitations.<n> Specifically, we design a lightweight multi-scale invertible neural network, which maps the input image into multi-scale latent representations.<n> Experimental results demonstrate that the proposed method achieves state-of-the-art performance compared to existing variable-rate methods.
arXiv Detail & Related papers (2025-03-27T09:08:39Z) - CALLIC: Content Adaptive Learning for Lossless Image Compression [64.47244912937204]
CALLIC sets a new state-of-the-art (SOTA) for learned lossless image compression.<n>We propose a content-aware autoregressive self-attention mechanism by leveraging convolutional gating operations.<n>During encoding, we decompose pre-trained layers, including depth-wise convolutions, using low-rank matrices and then adapt the incremental weights on testing image by Rate-guided Progressive Fine-Tuning (RPFT)<n>RPFT fine-tunes with gradually increasing patches that are sorted in descending order by estimated entropy, optimizing learning process and reducing adaptation time.
arXiv Detail & Related papers (2024-12-23T10:41:18Z) - Diffusion Product Quantization [18.32568431229839]
We explore the quantization of diffusion models in extreme compression regimes to reduce model size while maintaining performance.
We apply our compression method to the DiT model on ImageNet and consistently outperform other quantization approaches.
arXiv Detail & Related papers (2024-11-19T07:47:37Z) - Q-VLM: Post-training Quantization for Large Vision-Language Models [73.19871905102545]
We propose a post-training quantization framework of large vision-language models (LVLMs) for efficient multi-modal inference.<n>We mine the cross-layer dependency that significantly influences discretization errors of the entire vision-language model, and embed this dependency into optimal quantization strategy.<n> Experimental results demonstrate that our method compresses the memory by 2.78x and increase generate speed by 1.44x about 13B LLaVA model without performance degradation.
arXiv Detail & Related papers (2024-10-10T17:02:48Z) - Mixed-Precision Quantization for Deep Vision Models with Integer Quadratic Programming [7.0146264551420066]
Quantization is a widely used technique to compress neural networks.<n>MPQ addresses this by assigning varied bit-widths to layers, optimizing the accuracy-efficiency trade-off.<n>We introduce CLADO, a practical sensitivity-based MPQ algorithm that captures crosslayer dependency of quantization error.
arXiv Detail & Related papers (2023-07-11T15:56:00Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
Main bottleneck for generative inference with LLMs is memory bandwidth, rather than compute, for single batch inference.
We introduce SqueezeLLM, a post-training quantization framework that enables lossless compression to ultra-low precisions of up to 3-bit.
Our framework incorporates two novel ideas: (i) sensitivity-based non-uniform quantization, which searches for the optimal bit precision assignment based on second-order information; and (ii) the Dense-and-Sparse decomposition that stores outliers and sensitive weight values in an efficient sparse format.
arXiv Detail & Related papers (2023-06-13T08:57:54Z) - OPQ: Compressing Deep Neural Networks with One-shot Pruning-Quantization [32.60139548889592]
We propose a novel One-shot Pruning-Quantization (OPQ) in this paper.
OPQ analytically solves the compression allocation with pre-trained weight parameters only.
We propose a unified channel-wise quantization method that enforces all channels of each layer to share a common codebook.
arXiv Detail & Related papers (2022-05-23T09:05:25Z) - Estimating the Resize Parameter in End-to-end Learned Image Compression [50.20567320015102]
We describe a search-free resizing framework that can further improve the rate-distortion tradeoff of recent learned image compression models.
Our results show that our new resizing parameter estimation framework can provide Bjontegaard-Delta rate (BD-rate) improvement of about 10% against leading perceptual quality engines.
arXiv Detail & Related papers (2022-04-26T01:35:02Z) - Variable-Rate Deep Image Compression through Spatially-Adaptive Feature
Transform [58.60004238261117]
We propose a versatile deep image compression network based on Spatial Feature Transform (SFT arXiv:1804.02815)
Our model covers a wide range of compression rates using a single model, which is controlled by arbitrary pixel-wise quality maps.
The proposed framework allows us to perform task-aware image compressions for various tasks.
arXiv Detail & Related papers (2021-08-21T17:30:06Z) - Effective and Fast: A Novel Sequential Single Path Search for
Mixed-Precision Quantization [45.22093693422085]
Mixed-precision quantization model can match different quantization bit-precisions according to the sensitivity of different layers to achieve great performance.
It is a difficult problem to quickly determine the quantization bit-precision of each layer in deep neural networks according to some constraints.
We propose a novel sequential single path search (SSPS) method for mixed-precision quantization.
arXiv Detail & Related papers (2021-03-04T09:15:08Z) - Variational Bayesian Quantization [31.999462074510305]
We propose a novel algorithm for quantizing continuous latent representations in trained models.
Unlike current end-to-end neural compression methods that cater the model to a fixed quantization scheme, our algorithm separates model design and training from quantization.
Our algorithm can be seen as a novel extension of arithmetic coding to the continuous domain.
arXiv Detail & Related papers (2020-02-18T00:15:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.