MTCMB: A Multi-Task Benchmark Framework for Evaluating LLMs on Knowledge, Reasoning, and Safety in Traditional Chinese Medicine
- URL: http://arxiv.org/abs/2506.01252v1
- Date: Mon, 02 Jun 2025 02:01:40 GMT
- Title: MTCMB: A Multi-Task Benchmark Framework for Evaluating LLMs on Knowledge, Reasoning, and Safety in Traditional Chinese Medicine
- Authors: Shufeng Kong, Xingru Yang, Yuanyuan Wei, Zijie Wang, Hao Tang, Jiuqi Qin, Shuting Lan, Yingheng Wang, Junwen Bai, Zhuangbin Chen, Zibin Zheng, Caihua Liu, Hao Liang,
- Abstract summary: MTCMB comprises 12 sub-datasets spanning five major categories: knowledge QA, language understanding, diagnostic reasoning, prescription generation, and safety evaluation.<n>Preliminary results indicate that current LLMs perform well on foundational knowledge but fall short in clinical reasoning, prescription planning, and safety compliance.
- Score: 36.08458917280579
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional Chinese Medicine (TCM) is a holistic medical system with millennia of accumulated clinical experience, playing a vital role in global healthcare-particularly across East Asia. However, the implicit reasoning, diverse textual forms, and lack of standardization in TCM pose major challenges for computational modeling and evaluation. Large Language Models (LLMs) have demonstrated remarkable potential in processing natural language across diverse domains, including general medicine. Yet, their systematic evaluation in the TCM domain remains underdeveloped. Existing benchmarks either focus narrowly on factual question answering or lack domain-specific tasks and clinical realism. To fill this gap, we introduce MTCMB-a Multi-Task Benchmark for Evaluating LLMs on TCM Knowledge, Reasoning, and Safety. Developed in collaboration with certified TCM experts, MTCMB comprises 12 sub-datasets spanning five major categories: knowledge QA, language understanding, diagnostic reasoning, prescription generation, and safety evaluation. The benchmark integrates real-world case records, national licensing exams, and classical texts, providing an authentic and comprehensive testbed for TCM-capable models. Preliminary results indicate that current LLMs perform well on foundational knowledge but fall short in clinical reasoning, prescription planning, and safety compliance. These findings highlight the urgent need for domain-aligned benchmarks like MTCMB to guide the development of more competent and trustworthy medical AI systems. All datasets, code, and evaluation tools are publicly available at: https://github.com/Wayyuanyuan/MTCMB.
Related papers
- TCM-Ladder: A Benchmark for Multimodal Question Answering on Traditional Chinese Medicine [21.46828174190836]
We introduce TCM-Ladder, the first multimodal QA dataset specifically designed for evaluating large TCM language models.<n>The dataset spans multiple core disciplines of TCM, including fundamental theory, diagnostics, herbal formulas, internal medicine, surgery, pharmacognosy, and pediatrics.<n>The datasets were constructed using a combination of automated and manual filtering processes and comprise 52,000+ questions in total.
arXiv Detail & Related papers (2025-05-29T23:13:57Z) - Tianyi: A Traditional Chinese Medicine all-rounder language model and its Real-World Clinical Practice [15.020917068333237]
Tianyi is designed to assimilate interconnected and systematic TCM knowledge through a progressive learning manner.<n>Extensive evaluations demonstrate the significant potential of Tianyi as an AI assistant in TCM clinical practice and research.
arXiv Detail & Related papers (2025-05-19T14:17:37Z) - Med-CoDE: Medical Critique based Disagreement Evaluation Framework [72.42301910238861]
The reliability and accuracy of large language models (LLMs) in medical contexts remain critical concerns.<n>Current evaluation methods often lack robustness and fail to provide a comprehensive assessment of LLM performance.<n>We propose Med-CoDE, a specifically designed evaluation framework for medical LLMs to address these challenges.
arXiv Detail & Related papers (2025-04-21T16:51:11Z) - TCM-3CEval: A Triaxial Benchmark for Assessing Responses from Large Language Models in Traditional Chinese Medicine [10.74071774496229]
Large language models (LLMs) excel in various NLP tasks and modern medicine, but their evaluation in traditional Chinese medicine (TCM) is underexplored.<n>To address this, we introduce TCM3CEval, a benchmark assessing LLMs in TCM across three dimensions: core knowledge mastery, classical text understanding, and clinical decision-making.<n>Results show a performance hierarchy: all models have limitations in specialized like Meridian & Acupoint theory and Various TCM Schools, revealing gaps between current capabilities and clinical needs.
arXiv Detail & Related papers (2025-03-10T08:29:15Z) - CliMedBench: A Large-Scale Chinese Benchmark for Evaluating Medical Large Language Models in Clinical Scenarios [50.032101237019205]
CliMedBench is a comprehensive benchmark with 14 expert-guided core clinical scenarios.
The reliability of this benchmark has been confirmed in several ways.
arXiv Detail & Related papers (2024-10-04T15:15:36Z) - TCMBench: A Comprehensive Benchmark for Evaluating Large Language Models in Traditional Chinese Medicine [19.680694337954133]
The professional evaluation benchmarks for large language models (LLMs) have yet to be covered in the traditional Chinese medicine(TCM) domain.
To address this research gap, we introduce TCM-Bench, a comprehensive benchmark for evaluating LLM performance in TCM.
It comprises the TCM-ED dataset, consisting of 5,473 questions sourced from the TCM Licensing Exam (TCMLE), including 1,300 questions with authoritative analysis.
To evaluate LLMs beyond accuracy of question answering, we propose TCMScore, a metric tailored for evaluating the quality of answers generated by LLMs for TCM related questions.
arXiv Detail & Related papers (2024-06-03T09:11:13Z) - MedBench: A Large-Scale Chinese Benchmark for Evaluating Medical Large
Language Models [56.36916128631784]
We introduce MedBench, a comprehensive benchmark for the Chinese medical domain.
This benchmark is composed of four key components: the Chinese Medical Licensing Examination, the Resident Standardization Training Examination, and real-world clinic cases.
We perform extensive experiments and conduct an in-depth analysis from diverse perspectives, which culminate in the following findings.
arXiv Detail & Related papers (2023-12-20T07:01:49Z) - PromptCBLUE: A Chinese Prompt Tuning Benchmark for the Medical Domain [24.411904114158673]
We re-build the Chinese Biomedical Language Understanding Evaluation (CBlue) benchmark into a large scale prompt-tuning benchmark, PromptCBlue.
Our benchmark is a suitable test-bed and an online platform for evaluating Chinese LLMs' multi-task capabilities on a wide range bio-medical tasks.
arXiv Detail & Related papers (2023-10-22T02:20:38Z) - CMB: A Comprehensive Medical Benchmark in Chinese [67.69800156990952]
We propose a localized medical benchmark called CMB, a Comprehensive Medical Benchmark in Chinese.
While traditional Chinese medicine is integral to this evaluation, it does not constitute its entirety.
We have evaluated several prominent large-scale LLMs, including ChatGPT, GPT-4, dedicated Chinese LLMs, and LLMs specialized in the medical domain.
arXiv Detail & Related papers (2023-08-17T07:51:23Z) - PMC-LLaMA: Towards Building Open-source Language Models for Medicine [62.39105735933138]
Large Language Models (LLMs) have showcased remarkable capabilities in natural language understanding.
LLMs struggle in domains that require precision, such as medical applications, due to their lack of domain-specific knowledge.
We describe the procedure for building a powerful, open-source language model specifically designed for medicine applications, termed as PMC-LLaMA.
arXiv Detail & Related papers (2023-04-27T18:29:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.