Protocol Models: Scaling Decentralized Training with Communication-Efficient Model Parallelism
- URL: http://arxiv.org/abs/2506.01260v1
- Date: Mon, 02 Jun 2025 02:19:22 GMT
- Title: Protocol Models: Scaling Decentralized Training with Communication-Efficient Model Parallelism
- Authors: Sameera Ramasinghe, Thalaiyasingam Ajanthan, Gil Avraham, Yan Zuo, Alexander Long,
- Abstract summary: Scaling models has led to significant advancements in deep learning, but training these models in decentralized settings remains challenging.<n>We propose a novel compression algorithm that compresses both forward and backward passes, enabling up to 99% compression with no convergence degradation.
- Score: 59.79227116582264
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scaling models has led to significant advancements in deep learning, but training these models in decentralized settings remains challenging due to communication bottlenecks. While existing compression techniques are effective in data-parallel, they do not extend to model parallelism. Unlike data-parallel training, where weight gradients are exchanged, model-parallel requires compressing activations and activation gradients as they propagate through layers, accumulating compression errors. We propose a novel compression algorithm that compresses both forward and backward passes, enabling up to 99% compression with no convergence degradation with negligible memory/compute overhead. By leveraging a recursive structure in transformer networks, we predefine a low-dimensional subspace to confine the activations and gradients, allowing full reconstruction in subsequent layers. Our method achieves up to 100x improvement in communication efficiency and enables training billion-parameter-scale models over low-end GPUs connected via consumer-grade internet speeds as low as 80Mbps, matching the convergence of centralized datacenter systems with 100Gbps connections with model parallel.
Related papers
- Accelerating Large Language Model Training with Hybrid GPU-based Compression [3.204387803072905]
MPI libraries have been proven to reduce message size significantly and leverage interconnect bandwidth.
We investigate the efficacy of compression-assisted MPI collectives under the context of distributed Large Language Model (LLM) training.
arXiv Detail & Related papers (2024-09-04T04:05:30Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
We take a closer theoretical look at Independent Subnetwork Training (IST)
IST is a recently proposed and highly effective technique for solving the aforementioned problems.
We identify fundamental differences between IST and alternative approaches, such as distributed methods with compressed communication.
arXiv Detail & Related papers (2023-06-28T18:14:22Z) - GraVAC: Adaptive Compression for Communication-Efficient Distributed DL
Training [0.0]
Distributed data-parallel (DDP) training improves overall application throughput as multiple devices train on a subset of data and aggregate updates to produce a globally shared model.
GraVAC is a framework to dynamically adjust compression factor throughout training by evaluating model progress and assessing information loss associated with compression.
As opposed to using a static compression factor, GraVAC reduces end-to-end training time for ResNet101, VGG16 and LSTM by 4.32x, 1.95x and 6.67x respectively.
arXiv Detail & Related papers (2023-05-20T14:25:17Z) - Does compressing activations help model parallel training? [64.59298055364336]
We present the first empirical study on the effectiveness of compression methods for model parallelism.
We implement and evaluate three common classes of compression algorithms.
We evaluate these methods across more than 160 settings and 8 popular datasets.
arXiv Detail & Related papers (2023-01-06T18:58:09Z) - Training Recommender Systems at Scale: Communication-Efficient Model and
Data Parallelism [56.78673028601739]
We propose a compression framework called Dynamic Communication Thresholding (DCT) for communication-efficient hybrid training.
DCT reduces communication by at least $100times$ and $20times$ during DP and MP, respectively.
It improves end-to-end training time for a state-of-the-art industrial recommender model by 37%, without any loss in performance.
arXiv Detail & Related papers (2020-10-18T01:44:42Z) - Scaling Distributed Deep Learning Workloads beyond the Memory Capacity
with KARMA [58.040931661693925]
We propose a strategy that combines redundant recomputing and out-of-core methods.
We achieve an average of 1.52x speedup in six different models over the state-of-the-art out-of-core methods.
Our data parallel out-of-core solution can outperform complex hybrid model parallelism in training large models, e.g. Megatron-LM and Turning-NLG.
arXiv Detail & Related papers (2020-08-26T07:24:34Z) - PowerGossip: Practical Low-Rank Communication Compression in
Decentralized Deep Learning [62.440827696638664]
We introduce a simple algorithm that directly compresses the model differences between neighboring workers.
Inspired by the PowerSGD for centralized deep learning, this algorithm uses power steps to maximize the information transferred per bit.
arXiv Detail & Related papers (2020-08-04T09:14:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.