Contra4: Evaluating Contrastive Cross-Modal Reasoning in Audio, Video, Image, and 3D
- URL: http://arxiv.org/abs/2506.01275v1
- Date: Mon, 02 Jun 2025 03:12:13 GMT
- Title: Contra4: Evaluating Contrastive Cross-Modal Reasoning in Audio, Video, Image, and 3D
- Authors: Artemis Panagopoulou, Le Xue, Honglu Zhou, silvio savarese, Ran Xu, Caiming Xiong, Chris Callison-Burch, Mark Yatskar, Juan Carlos Niebles,
- Abstract summary: We introduce Contra4, a dataset for contrastive cross-modal reasoning across four modalities: image, audio, video, and 3D.<n> Contra4 combines human-annotated captions with a mixture-of-models filter to ensure high-quality supervision, resulting in 174k training examples and a manually verified test set of 2.3k samples.<n>While task-specific fine-tuning improves performance by 56% relative to baseline, state-of-the-art models still achieve only 56% accuracy overall and 42% in four-modality settings.
- Score: 107.69104331520677
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Real-world decision-making often begins with identifying which modality contains the most relevant information for a given query. While recent multimodal models have made impressive progress in processing diverse inputs, it remains unclear whether they can reason contrastively across multiple modalities to select the one that best satisfies a natural language prompt. We argue this capability is foundational, especially in retrieval-augmented and decision-time contexts, where systems must evaluate multiple signals and identify which one conveys the relevant information. To evaluate this skill, we introduce Contra4, a dataset for contrastive cross-modal reasoning across four modalities: image, audio, video, and 3D. Each example presents a natural language question alongside multiple candidate modality instances, and the model must select the one that semantically aligns with the prompt. Contra4 combines human-annotated captions with a mixture-of-models round-trip-consistency filter to ensure high-quality supervision, resulting in 174k training examples and a manually verified test set of 2.3k samples. While task-specific fine-tuning improves performance by 56% relative to baseline, state-of-the-art models still achieve only 56% accuracy overall and 42% in four-modality settings, underscoring a significant limitation in current multimodal models.
Related papers
- RAVEN: Query-Guided Representation Alignment for Question Answering over Audio, Video, Embedded Sensors, and Natural Language [0.0]
RAVEN is a unified QA architecture whose core is QuART, a query-conditioned cross-modal gating module.<n>RAVEN is trained through a three-stage pipeline comprising unimodal pretraining, query-aligned fusion, and disagreement-oriented fine-tuning.<n> Experimental results show RAVEN achieves up to 14.5% and 8.0% gains in accuracy compared to state-of-the-art multi-modal large language models.
arXiv Detail & Related papers (2025-05-21T14:33:36Z) - VOILA: Evaluation of MLLMs For Perceptual Understanding and Analogical Reasoning [63.0285363282581]
Multimodal Large Language Models (MLLMs) have become a powerful tool for integrating visual and textual information.<n>We introduce VOILA, a benchmark designed to evaluate MLLMs' perceptual understanding and abstract relational reasoning.<n>We reveal that current MLLMs struggle to comprehend inter-image relationships and exhibit limited capabilities in high-level relational reasoning.
arXiv Detail & Related papers (2025-02-25T23:36:19Z) - mmE5: Improving Multimodal Multilingual Embeddings via High-quality Synthetic Data [71.352883755806]
Multimodal embedding models have gained significant attention for their ability to map data from different modalities, such as text and images, into a unified representation space.<n>However, the limited labeled multimodal data often hinders embedding performance.<n>Recent approaches have leveraged data synthesis to address this problem, yet the quality of synthetic data remains a critical bottleneck.
arXiv Detail & Related papers (2025-02-12T15:03:33Z) - DARE: Diverse Visual Question Answering with Robustness Evaluation [16.87867803628065]
Vision Language Models (VLMs) extend remarkable capabilities of text-only large language models and vision-only models.<n>They struggle with a number of crucial vision-language (VL) reasoning abilities such as counting and spatial reasoning.<n>We introduce DARE, Diverse Visual Question Answering with Robustness Evaluation.
arXiv Detail & Related papers (2024-09-26T16:31:50Z) - MT-Eval: A Multi-Turn Capabilities Evaluation Benchmark for Large
Language Models [70.92847554971065]
We introduce MT-Eval, a comprehensive benchmark designed to evaluate multi-turn conversational abilities.
By analyzing human-LLM conversations, we categorize interaction patterns into four types: recollection, expansion, refinement, and follow-up.
Our evaluation of 11 well-known LLMs shows that while closed-source models generally surpass open-source ones, certain open-source models exceed GPT-3.5-Turbo in specific tasks.
arXiv Detail & Related papers (2024-01-30T04:50:28Z) - REBUS: A Robust Evaluation Benchmark of Understanding Symbols [1.90463290938268]
GPT-4o significantly outperforms all other models, followed by proprietary models outperforming all other evaluated models.
Even the best model has a final accuracy of only 42%, which goes down to just 7% on hard puzzles.
Our benchmark can therefore be used to identify major shortcomings in the knowledge and reasoning of multimodal large language models.
arXiv Detail & Related papers (2024-01-11T00:30:28Z) - X-InstructBLIP: A Framework for aligning X-Modal instruction-aware representations to LLMs and Emergent Cross-modal Reasoning [109.9413329636322]
This paper introduces an efficient framework that integrates multiple modalities (images, 3D, audio and video) to a frozen Large Language Models (LLMs)
Our approach explores two distinct projection mechanisms: Q-Formers and Linear Projections (LPs)
arXiv Detail & Related papers (2023-11-30T18:43:51Z) - Read, Look or Listen? What's Needed for Solving a Multimodal Dataset [7.0430001782867]
We propose a two-step method to analyze multimodal datasets, which leverages a small seed of human annotation to map each multimodal instance to the modalities required to process it.
We apply our approach to TVQA, a video question-answering dataset, and discover that most questions can be answered using a single modality, without a substantial bias towards any specific modality.
We analyze the MERLOT Reserve, finding that it struggles with image-based questions compared to text and audio, but also with auditory speaker identification.
arXiv Detail & Related papers (2023-07-06T08:02:45Z) - Towards Fast Adaptation of Pretrained Contrastive Models for
Multi-channel Video-Language Retrieval [70.30052749168013]
Multi-channel video-language retrieval require models to understand information from different channels.
contrastive multimodal models are shown to be highly effective at aligning entities in images/videos and text.
There is not a clear way to quickly adapt these two lines to multi-channel video-language retrieval with limited data and resources.
arXiv Detail & Related papers (2022-06-05T01:43:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.