Near-Optimal Clustering in Mixture of Markov Chains
- URL: http://arxiv.org/abs/2506.01324v1
- Date: Mon, 02 Jun 2025 05:10:40 GMT
- Title: Near-Optimal Clustering in Mixture of Markov Chains
- Authors: Junghyun Lee, Yassir Jedra, Alexandre Proutière, Se-Young Yun,
- Abstract summary: We study the problem of clustering $T$ trajectories of length $H$, each generated by one of $K$ unknown ergodic Markov chains over a finite state space of size $S$.<n>We derive an instance-dependent, high-probability lower bound on the clustering error rate, governed by the weighted KL divergence between the transition kernels of the chains.<n>We then present a novel two-stage clustering algorithm.
- Score: 74.3828414695655
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the problem of clustering $T$ trajectories of length $H$, each generated by one of $K$ unknown ergodic Markov chains over a finite state space of size $S$. The goal is to accurately group trajectories according to their underlying generative model. We begin by deriving an instance-dependent, high-probability lower bound on the clustering error rate, governed by the weighted KL divergence between the transition kernels of the chains. We then present a novel two-stage clustering algorithm. In Stage~I, we apply spectral clustering using a new injective Euclidean embedding for ergodic Markov chains -- a contribution of independent interest that enables sharp concentration results. Stage~II refines the initial clusters via a single step of likelihood-based reassignment. Our method achieves a near-optimal clustering error with high probability, under the conditions $H = \tilde{\Omega}(\gamma_{\mathrm{ps}}^{-1} (S^2 \vee \pi_{\min}^{-1}))$ and $TH = \tilde{\Omega}(\gamma_{\mathrm{ps}}^{-1} S^2 )$, where $\pi_{\min}$ is the minimum stationary probability of a state across the $K$ chains and $\gamma_{\mathrm{ps}}$ is the minimum pseudo-spectral gap. These requirements provide significant improvements, if not at least comparable, to the state-of-the-art guarantee (Kausik et al., 2023), and moreover, our algorithm offers a key practical advantage: unlike existing approach, it requires no prior knowledge of model-specific quantities (e.g., separation between kernels or visitation probabilities). We conclude by discussing the inherent gap between our upper and lower bounds, providing insights into the unique structure of this clustering problem.
Related papers
- Generalization Performance of Ensemble Clustering: From Theory to Algorithm [57.176040163699554]
This paper focuses on generalization error, excess risk and consistency in ensemble clustering.<n>By assigning varying weights to finite clusterings, we minimize the error between the empirical average clusterings and their expectation.<n>We instantiate our theory to develop a new ensemble clustering algorithm.
arXiv Detail & Related papers (2025-06-01T09:34:52Z) - Clustering Mixtures of Bounded Covariance Distributions Under Optimal
Separation [44.25945344950543]
We study the clustering problem for mixtures of bounded covariance distributions.
We give the first poly-time algorithm for this clustering task.
Our algorithm is robust to $Omega(alpha)$-fraction of adversarial outliers.
arXiv Detail & Related papers (2023-12-19T01:01:53Z) - Revisiting Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [69.15976031704687]
We propose IAC (Instance-Adaptive Clustering), the first algorithm whose performance matches the instance-specific lower bounds both in expectation and with high probability.<n>IAC maintains an overall computational complexity of $ mathcalO(n, textpolylog(n) $, making it scalable and practical for large-scale problems.
arXiv Detail & Related papers (2023-06-18T08:46:06Z) - Subspace clustering in high-dimensions: Phase transitions \&
Statistical-to-Computational gap [24.073221004661427]
A simple model to study subspace clustering is the high-dimensional $k$-Gaussian mixture model.
We provide an exact characterization of the statistically optimal reconstruction error in this model in the high-dimensional regime with extensive sparsity.
arXiv Detail & Related papers (2022-05-26T17:47:35Z) - An Improved Analysis of Gradient Tracking for Decentralized Machine
Learning [34.144764431505486]
We consider decentralized machine learning over a network where the training data is distributed across $n$ agents.
The agent's common goal is to find a model that minimizes the average of all local loss functions.
We improve the dependency on $p$ from $mathcalO(p-1)$ to $mathcalO(p-1)$ in the noiseless case.
arXiv Detail & Related papers (2022-02-08T12:58:14Z) - Lattice-Based Methods Surpass Sum-of-Squares in Clustering [98.46302040220395]
Clustering is a fundamental primitive in unsupervised learning.
Recent work has established lower bounds against the class of low-degree methods.
We show that, perhaps surprisingly, this particular clustering model textitdoes not exhibit a statistical-to-computational gap.
arXiv Detail & Related papers (2021-12-07T18:50:17Z) - Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and
Variance Reduction [63.41789556777387]
Asynchronous Q-learning aims to learn the optimal action-value function (or Q-function) of a Markov decision process (MDP)
We show that the number of samples needed to yield an entrywise $varepsilon$-accurate estimate of the Q-function is at most on the order of $frac1mu_min (1-gamma)5varepsilon2+ fract_mixmu_min (1-gamma)$ up to some logarithmic factor.
arXiv Detail & Related papers (2020-06-04T17:51:00Z) - Computationally efficient sparse clustering [67.95910835079825]
We provide a finite sample analysis of a new clustering algorithm based on PCA.
We show that it achieves the minimax optimal misclustering rate in the regime $|theta infty$.
arXiv Detail & Related papers (2020-05-21T17:51:30Z) - Structures of Spurious Local Minima in $k$-means [20.155509538529568]
We investigate the structures of spurious local solutions to the $k$-means problem.
We prove that this is essentially the only type of spurious local minima under a separation condition.
arXiv Detail & Related papers (2020-02-16T22:15:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.