NoiseAR: AutoRegressing Initial Noise Prior for Diffusion Models
- URL: http://arxiv.org/abs/2506.01337v1
- Date: Mon, 02 Jun 2025 05:32:35 GMT
- Title: NoiseAR: AutoRegressing Initial Noise Prior for Diffusion Models
- Authors: Zeming Li, Xiangyue Liu, Xiangyu Zhang, Ping Tan, Heung-Yeung Shum,
- Abstract summary: NoiseAR is a novel method for AutoRegressive Initial Noise Prior for Diffusion Models.<n>We formulate the generation of the initial noise prior's parameters as an autoregressive probabilistic modeling task over spatial patches or tokens.<n>Our experiments demonstrate that NoiseAR can generate initial noise priors that lead to improved sample quality and enhanced consistency with conditional inputs.
- Score: 50.51982871889886
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion models have emerged as powerful generative frameworks, creating data samples by progressively denoising an initial random state. Traditionally, this initial state is sampled from a simple, fixed distribution like isotropic Gaussian, inherently lacking structure and a direct mechanism for external control. While recent efforts have explored ways to introduce controllability into the diffusion process, particularly at the initialization stage, they often rely on deterministic or heuristic approaches. These methods can be suboptimal, lack expressiveness, and are difficult to scale or integrate into more sophisticated optimization frameworks. In this paper, we introduce NoiseAR, a novel method for AutoRegressive Initial Noise Prior for Diffusion Models. Instead of a static, unstructured source, NoiseAR learns to generate a dynamic and controllable prior distribution for the initial noise. We formulate the generation of the initial noise prior's parameters as an autoregressive probabilistic modeling task over spatial patches or tokens. This approach enables NoiseAR to capture complex spatial dependencies and introduce learned structure into the initial state. Crucially, NoiseAR is designed to be conditional, allowing text prompts to directly influence the learned prior, thereby achieving fine-grained control over the diffusion initialization. Our experiments demonstrate that NoiseAR can generate initial noise priors that lead to improved sample quality and enhanced consistency with conditional inputs, offering a powerful, learned alternative to traditional random initialization. A key advantage of NoiseAR is its probabilistic formulation, which naturally supports seamless integration into probabilistic frameworks like Markov Decision Processes and Reinforcement Learning. Our code will be available at https://github.com/HKUST-SAIL/NoiseAR/
Related papers
- Elucidated Rolling Diffusion Models for Probabilistic Weather Forecasting [52.6508222408558]
We introduce Elucidated Rolling Diffusion Models (ERDM)<n>ERDM is the first framework to unify a rolling forecast structure with the principled, performant design of Elucidated Diffusion Models (EDM)<n>On 2D Navier-Stokes simulations and ERA5 global weather forecasting at 1.5circ resolution, ERDM consistently outperforms key diffusion-based baselines.
arXiv Detail & Related papers (2025-06-24T21:44:31Z) - A Minimalist Method for Fine-tuning Text-to-Image Diffusion Models [3.8623569699070357]
Noise PPO is a minimalist reinforcement learning algorithm that learns a prompt-conditioned initial noise generator.<n>Experiments show that Noise PPO consistently improves alignment and sample quality over the original model.<n>These findings reinforce the practical value of minimalist RL fine-tuning for diffusion models.
arXiv Detail & Related papers (2025-05-23T00:01:52Z) - Beyond Fixed Horizons: A Theoretical Framework for Adaptive Denoising Diffusions [1.9116784879310031]
We introduce a new class of generative diffusion models that achieve a time-homogeneous structure for both the noising and denoising processes.<n>A key feature of the model is its adaptability to the target data, enabling a variety of downstream tasks using a pre-trained unconditional generative model.
arXiv Detail & Related papers (2025-01-31T18:23:27Z) - RDPM: Solve Diffusion Probabilistic Models via Recurrent Token Prediction [17.005198258689035]
Diffusion Probabilistic Models (DPMs) have emerged as the de facto approach for high-fidelity image synthesis.<n>We introduce a novel generative framework, the Recurrent Diffusion Probabilistic Model (RDPM), which enhances the diffusion process through a recurrent token prediction mechanism.
arXiv Detail & Related papers (2024-12-24T12:28:19Z) - Arbitrary-steps Image Super-resolution via Diffusion Inversion [68.78628844966019]
This study presents a new image super-resolution (SR) technique based on diffusion inversion, aiming at harnessing the rich image priors encapsulated in large pre-trained diffusion models to improve SR performance.<n>We design a Partial noise Prediction strategy to construct an intermediate state of the diffusion model, which serves as the starting sampling point.<n>Once trained, this noise predictor can be used to initialize the sampling process partially along the diffusion trajectory, generating the desirable high-resolution result.
arXiv Detail & Related papers (2024-12-12T07:24:13Z) - Derivative-Free Guidance in Continuous and Discrete Diffusion Models with Soft Value-Based Decoding [84.3224556294803]
Diffusion models excel at capturing the natural design spaces of images, molecules, DNA, RNA, and protein sequences.
We aim to optimize downstream reward functions while preserving the naturalness of these design spaces.
Our algorithm integrates soft value functions, which looks ahead to how intermediate noisy states lead to high rewards in the future.
arXiv Detail & Related papers (2024-08-15T16:47:59Z) - FIND: Fine-tuning Initial Noise Distribution with Policy Optimization for Diffusion Models [10.969811500333755]
We introduce a Fine-tuning Initial Noise Distribution (FIND) framework with policy optimization.
Our method achieves 10 times faster than the SOTA approach.
arXiv Detail & Related papers (2024-07-28T10:07:55Z) - Beyond Image Prior: Embedding Noise Prior into Conditional Denoising Transformer [17.430622649002427]
Existing learning-based denoising methods typically train models to generalize the image prior from large-scale datasets.
We propose a new perspective on the denoising challenge by highlighting the distinct separation between noise and image priors.
We introduce a Locally Noise Prior Estimation algorithm, which accurately estimates the noise prior directly from a single raw noisy image.
arXiv Detail & Related papers (2024-07-12T08:43:11Z) - One More Step: A Versatile Plug-and-Play Module for Rectifying Diffusion
Schedule Flaws and Enhancing Low-Frequency Controls [77.42510898755037]
One More Step (OMS) is a compact network that incorporates an additional simple yet effective step during inference.
OMS elevates image fidelity and harmonizes the dichotomy between training and inference, while preserving original model parameters.
Once trained, various pre-trained diffusion models with the same latent domain can share the same OMS module.
arXiv Detail & Related papers (2023-11-27T12:02:42Z) - Improved, Deterministic Smoothing for L1 Certified Robustness [119.86676998327864]
We propose a non-additive and deterministic smoothing method, Deterministic Smoothing with Splitting Noise (DSSN)
In contrast to uniform additive smoothing, the SSN certification does not require the random noise components used to be independent.
This is the first work to provide deterministic "randomized smoothing" for a norm-based adversarial threat model.
arXiv Detail & Related papers (2021-03-17T21:49:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.