Multilingual Definition Modeling
- URL: http://arxiv.org/abs/2506.01489v1
- Date: Mon, 02 Jun 2025 09:48:37 GMT
- Title: Multilingual Definition Modeling
- Authors: Edison Marrese-Taylor, Erica K. Shimomoto, Alfredo Solano, Enrique Reid,
- Abstract summary: We use monolingual dictionary data for four new languages (Spanish, French, Portuguese, and German)<n>We test the performance of pre-trained multilingual language models on definition modeling of monosemic words when finetuned on this data.<n>Results show that multilingual language models can perform on-pair with English but cannot leverage potential cross-lingual synergies.
- Score: 1.9409995498330783
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose the first multilingual study on definition modeling. We use monolingual dictionary data for four new languages (Spanish, French, Portuguese, and German) and perform an in-depth empirical study to test the performance of pre-trained multilingual language models on definition modeling of monosemic words when finetuned on this data. Furthermore, we use a zero-shot approach to test the multilingual capabilities of two popular chat-based Large Language Models (LLMs) in the task. Results show that multilingual language models can perform on-pair with English but cannot leverage potential cross-lingual synergies, with LLMs generally offering better performance overall. A comprehensive human evaluation of the LLM-generated definition highlights the zero and few-shot capabilities of these models in this new task, also showing their shortcomings. Finally, we show that performance on our task via BERTScore strongly correlates to the performance on multilingual LLM benchmarks, suggesting that our task offers a viable compute-constrained, stable and natural alternative to these.
Related papers
- Enhancing Multilingual Language Models for Code-Switched Input Data [0.0]
This research investigates if pre-training Multilingual BERT (mBERT) on code-switched datasets improves the model's performance on critical NLP tasks.<n>We use a dataset of Spanglish tweets for pre-training and evaluate the pre-trained model against a baseline model.<n>Our findings show that our pre-trained mBERT model outperforms or matches the baseline model in the given tasks, with the most significant improvements seen for parts of speech tagging.
arXiv Detail & Related papers (2025-03-11T02:49:41Z) - LUSIFER: Language Universal Space Integration for Enhanced Multilingual Embeddings with Large Language Models [89.13128402847943]
We present LUSIFER, a novel zero-shot approach that adapts LLM-based embedding models for multilingual tasks without requiring multilingual supervision.<n>LUSIFER's architecture combines a multilingual encoder, serving as a language-universal learner, with an LLM-based embedding model optimized for embedding-specific tasks.<n>We introduce a new benchmark encompassing 5 primary embedding tasks, 123 diverse datasets, and coverage across 14 languages.
arXiv Detail & Related papers (2025-01-01T15:43:07Z) - P-MMEval: A Parallel Multilingual Multitask Benchmark for Consistent Evaluation of LLMs [84.24644520272835]
We introduce P-MMEval, a large-scale benchmark covering effective fundamental and capability-specialized datasets.<n>P-MMEval delivers consistent language coverage across various datasets and provides parallel samples.<n>We conduct extensive experiments on representative multilingual model series to compare performances across models and tasks.
arXiv Detail & Related papers (2024-11-14T01:29:36Z) - PolyLM: An Open Source Polyglot Large Language Model [57.64420154135178]
We present PolyLM, a multilingual large language model (LLMs) trained on 640 billion (B) tokens, avaliable in two model sizes: 1.7B and 13B.
To enhance its multilingual capabilities, we 1) integrate bilingual data into training data; and 2) adopt a curriculum learning strategy that increases the proportion of non-English data from 30% in the first stage to 60% in the final stage during pre-training.
Further, we propose a multilingual self-instruct method which automatically generates 132.7K diverse multilingual instructions for model fine-tuning.
arXiv Detail & Related papers (2023-07-12T09:00:37Z) - Beyond Static Models and Test Sets: Benchmarking the Potential of
Pre-trained Models Across Tasks and Languages [15.373725507698591]
We argue that this makes the existing practices in multilingual evaluation unreliable and does not provide a full picture of the performance of MMLMs across the linguistic landscape.
We propose that the recent work done in Performance Prediction for NLP tasks can serve as a potential solution in fixing benchmarking in Multilingual NLP.
We compare performance prediction with translating test data with a case study on four different multilingual datasets, and observe that these methods can provide reliable estimates of the performance that are often on-par with the translation based approaches.
arXiv Detail & Related papers (2022-05-12T20:42:48Z) - Language Models are Few-shot Multilingual Learners [66.11011385895195]
We evaluate the multilingual skills of the GPT and T5 models in conducting multi-class classification on non-English languages.
We show that, given a few English examples as context, pre-trained language models can predict not only English test samples but also non-English ones.
arXiv Detail & Related papers (2021-09-16T03:08:22Z) - Specializing Multilingual Language Models: An Empirical Study [50.7526245872855]
Contextualized word representations from pretrained multilingual language models have become the de facto standard for addressing natural language tasks.
For languages rarely or never seen by these models, directly using such models often results in suboptimal representation or use of data.
arXiv Detail & Related papers (2021-06-16T18:13:55Z) - Towards Fully Bilingual Deep Language Modeling [1.3455090151301572]
We consider whether it is possible to pre-train a bilingual model for two remotely related languages without compromising performance at either language.
We create a Finnish-English bilingual BERT model and evaluate its performance on datasets used to evaluate the corresponding monolingual models.
Our bilingual model performs on par with Google's original English BERT on GLUE and nearly matches the performance of monolingual Finnish BERT on a range of Finnish NLP tasks.
arXiv Detail & Related papers (2020-10-22T12:22:50Z) - Mixed-Lingual Pre-training for Cross-lingual Summarization [54.4823498438831]
Cross-lingual Summarization aims at producing a summary in the target language for an article in the source language.
We propose a solution based on mixed-lingual pre-training that leverages both cross-lingual tasks like translation and monolingual tasks like masked language models.
Our model achieves an improvement of 2.82 (English to Chinese) and 1.15 (Chinese to English) ROUGE-1 scores over state-of-the-art results.
arXiv Detail & Related papers (2020-10-18T00:21:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.