Representations of Fact, Fiction and Forecast in Large Language Models: Epistemics and Attitudes
- URL: http://arxiv.org/abs/2506.01512v1
- Date: Mon, 02 Jun 2025 10:19:42 GMT
- Title: Representations of Fact, Fiction and Forecast in Large Language Models: Epistemics and Attitudes
- Authors: Meng Li, Michael Vrazitulis, David Schlangen,
- Abstract summary: Rational speakers are supposed to know what they know and what they do not know.<n>It is still a challenge for current large language models to generate corresponding utterances based on the assessment of facts and confidence in an uncertain real-world environment.
- Score: 15.754908203866284
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Rational speakers are supposed to know what they know and what they do not know, and to generate expressions matching the strength of evidence. In contrast, it is still a challenge for current large language models to generate corresponding utterances based on the assessment of facts and confidence in an uncertain real-world environment. While it has recently become popular to estimate and calibrate confidence of LLMs with verbalized uncertainty, what is lacking is a careful examination of the linguistic knowledge of uncertainty encoded in the latent space of LLMs. In this paper, we draw on typological frameworks of epistemic expressions to evaluate LLMs' knowledge of epistemic modality, using controlled stories. Our experiments show that the performance of LLMs in generating epistemic expressions is limited and not robust, and hence the expressions of uncertainty generated by LLMs are not always reliable. To build uncertainty-aware LLMs, it is necessary to enrich semantic knowledge of epistemic modality in LLMs.
Related papers
- UAlign: Leveraging Uncertainty Estimations for Factuality Alignment on Large Language Models [41.67393607081513]
Large Language Models (LLMs) often struggle to accurately express the factual knowledge they possess.<n>We propose the UAlign framework, which leverages Uncertainty estimations to represent knowledge boundaries.<n>We show that the proposed UAlign can significantly enhance the LLMs' capacities to confidently answer known questions.
arXiv Detail & Related papers (2024-12-16T14:14:27Z) - A Survey on Uncertainty Quantification of Large Language Models: Taxonomy, Open Research Challenges, and Future Directions [9.045698110081686]
Large language models (LLMs) generate plausible, factually-incorrect responses, which are expressed with striking confidence.<n>Previous work has shown that hallucinations and other non-factual responses generated by LLMs can be detected by examining the uncertainty of the LLM in its response to the pertinent prompt.<n>This survey seeks to provide an extensive review of existing uncertainty quantification methods for LLMs, identifying their salient features, along with their strengths and weaknesses.
arXiv Detail & Related papers (2024-12-07T06:56:01Z) - Finetuning Language Models to Emit Linguistic Expressions of Uncertainty [5.591074369497796]
Large language models (LLMs) are increasingly employed in information-seeking and decision-making tasks.
LLMs tend to generate information that conflicts with real-world facts, and their persuasive style can make these inaccuracies appear confident and convincing.
In this work, we explore supervised finetuning on uncertainty-augmented predictions as a method to develop models that produce linguistic expressions of uncertainty.
arXiv Detail & Related papers (2024-09-18T17:52:53Z) - Misinforming LLMs: vulnerabilities, challenges and opportunities [4.54019093815234]
Large Language Models (LLMs) have made significant advances in natural language processing, but their underlying mechanisms are often misunderstood.
This paper argues that current LLM architectures are inherently untrustworthy due to their reliance on correlations of sequential patterns of word embedding vectors.
Research into combining generative transformer-based models with fact bases and logic programming languages may lead to the development of trustworthy LLMs.
arXiv Detail & Related papers (2024-08-02T10:35:49Z) - Understanding the Relationship between Prompts and Response Uncertainty in Large Language Models [55.332004960574004]
Large language models (LLMs) are widely used in decision-making, but their reliability, especially in critical tasks like healthcare, is not well-established.<n>This paper investigates how the uncertainty of responses generated by LLMs relates to the information provided in the input prompt.<n>We propose a prompt-response concept model that explains how LLMs generate responses and helps understand the relationship between prompts and response uncertainty.
arXiv Detail & Related papers (2024-07-20T11:19:58Z) - Kernel Language Entropy: Fine-grained Uncertainty Quantification for LLMs from Semantic Similarities [79.9629927171974]
Uncertainty in Large Language Models (LLMs) is crucial for applications where safety and reliability are important.
We propose Kernel Language Entropy (KLE), a novel method for uncertainty estimation in white- and black-box LLMs.
arXiv Detail & Related papers (2024-05-30T12:42:05Z) - LLMs' Reading Comprehension Is Affected by Parametric Knowledge and Struggles with Hypothetical Statements [59.71218039095155]
Task of reading comprehension (RC) provides a primary means to assess language models' natural language understanding (NLU) capabilities.<n>If the context aligns with the models' internal knowledge, it is hard to discern whether the models' answers stem from context comprehension or from internal information.<n>To address this issue, we suggest to use RC on imaginary data, based on fictitious facts and entities.
arXiv Detail & Related papers (2024-04-09T13:08:56Z) - Uncertainty Quantification for In-Context Learning of Large Language Models [52.891205009620364]
In-context learning has emerged as a groundbreaking ability of Large Language Models (LLMs)
We propose a novel formulation and corresponding estimation method to quantify both types of uncertainties.
The proposed method offers an unsupervised way to understand the prediction of in-context learning in a plug-and-play fashion.
arXiv Detail & Related papers (2024-02-15T18:46:24Z) - Benchmarking LLMs via Uncertainty Quantification [91.72588235407379]
The proliferation of open-source Large Language Models (LLMs) has highlighted the urgent need for comprehensive evaluation methods.
We introduce a new benchmarking approach for LLMs that integrates uncertainty quantification.
Our findings reveal that: I) LLMs with higher accuracy may exhibit lower certainty; II) Larger-scale LLMs may display greater uncertainty compared to their smaller counterparts; and III) Instruction-finetuning tends to increase the uncertainty of LLMs.
arXiv Detail & Related papers (2024-01-23T14:29:17Z) - Examining LLMs' Uncertainty Expression Towards Questions Outside
Parametric Knowledge [35.067234242461545]
Large language models (LLMs) express uncertainty in situations where they lack sufficient parametric knowledge to generate reasonable responses.
This work aims to systematically investigate LLMs' behaviors in such situations, emphasizing the trade-off between honesty and helpfulness.
arXiv Detail & Related papers (2023-11-16T10:02:40Z) - Assessing the Reliability of Large Language Model Knowledge [78.38870272050106]
Large language models (LLMs) have been treated as knowledge bases due to their strong performance in knowledge probing tasks.
How do we evaluate the capabilities of LLMs to consistently produce factually correct answers?
We propose MOdel kNowledge relIabiliTy scORe (MONITOR), a novel metric designed to directly measure LLMs' factual reliability.
arXiv Detail & Related papers (2023-10-15T12:40:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.