Generalized Gradient Norm Clipping & Non-Euclidean $(L_0,L_1)$-Smoothness
- URL: http://arxiv.org/abs/2506.01913v1
- Date: Mon, 02 Jun 2025 17:34:29 GMT
- Title: Generalized Gradient Norm Clipping & Non-Euclidean $(L_0,L_1)$-Smoothness
- Authors: Thomas Pethick, Wanyun Xie, Mete Erdogan, Kimon Antonakopoulos, Tony Silveti-Falls, Volkan Cevher,
- Abstract summary: This work introduces a hybrid non-Euclidean optimization method which generalizes norm clipping by combining steepest descent and conditional gradient approaches.<n>We discuss how to instantiate the algorithms for deep learning and demonstrate their properties on image classification and language modeling.
- Score: 51.302674884611335
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work introduces a hybrid non-Euclidean optimization method which generalizes gradient norm clipping by combining steepest descent and conditional gradient approaches. The method achieves the best of both worlds by establishing a descent property under a generalized notion of ($L_0$,$L_1$)-smoothness. Weight decay is incorporated in a principled manner by identifying a connection to the Frank-Wolfe short step. In the stochastic case, we show an order optimal $O(n^{-1/4})$ convergence rate by leveraging a momentum based gradient estimator. We discuss how to instantiate the algorithms for deep learning and demonstrate their properties on image classification and language modeling.
Related papers
- Gradient Methods with Online Scaling [19.218484733179356]
We introduce a framework to accelerate the convergence of gradient-based methods with online learning.
We show for the first time that the widely-used hypergradient descent improves on the convergence of gradient descent.
arXiv Detail & Related papers (2024-11-04T05:04:18Z) - Methods for Convex $(L_0,L_1)$-Smooth Optimization: Clipping, Acceleration, and Adaptivity [50.25258834153574]
We focus on the class of (strongly) convex $(L0)$-smooth functions and derive new convergence guarantees for several existing methods.<n>In particular, we derive improved convergence rates for Gradient Descent with smoothnessed Gradient Clipping and for Gradient Descent with Polyak Stepsizes.
arXiv Detail & Related papers (2024-09-23T13:11:37Z) - A Stochastic Quasi-Newton Method for Non-convex Optimization with Non-uniform Smoothness [4.097563258332958]
We propose a fast quasi-Newton method when there exists non-uniformity in smoothness.
Our algorithm can achieve the best-known $mathcalO(epsilon-3)$ sample complexity and enjoys convergence speedup.
Our numerical experiments show that our proposed algorithm outperforms the state-of-the-art approaches.
arXiv Detail & Related papers (2024-03-22T14:40:29Z) - Optimal Extragradient-Based Bilinearly-Coupled Saddle-Point Optimization [116.89941263390769]
We consider the smooth convex-concave bilinearly-coupled saddle-point problem, $min_mathbfxmax_mathbfyF(mathbfx) + H(mathbfx,mathbfy)$, where one has access to first-order oracles for $F$, $G$ as well as the bilinear coupling function $H$.
We present a emphaccelerated gradient-extragradient (AG-EG) descent-ascent algorithm that combines extragrad
arXiv Detail & Related papers (2022-06-17T06:10:20Z) - Convergence of First-Order Methods for Constrained Nonconvex
Optimization with Dependent Data [7.513100214864646]
We show the worst-case complexity of convergence $tildeO(t-1/4)$ and MoreautildeO(vareps-4)$ for smooth non- optimization.
We obtain first online nonnegative matrix factorization algorithms for dependent data based on projected gradient methods with adaptive step sizes and optimal convergence.
arXiv Detail & Related papers (2022-03-29T17:59:10Z) - Leveraging Non-uniformity in First-order Non-convex Optimization [93.6817946818977]
Non-uniform refinement of objective functions leads to emphNon-uniform Smoothness (NS) and emphNon-uniform Lojasiewicz inequality (NL)
New definitions inspire new geometry-aware first-order methods that converge to global optimality faster than the classical $Omega (1/t2)$ lower bounds.
arXiv Detail & Related papers (2021-05-13T04:23:07Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
This work is on the iteration of zero-th-order (ZO) optimization which does not require first-order information.
We show that with a graceful design in coordinate importance sampling, the proposed ZO optimization method is efficient both in terms of complexity as well as as function query cost.
arXiv Detail & Related papers (2020-12-21T17:29:58Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
Adaptive algorithms perform gradient updates using the history of gradients and are ubiquitous in training deep neural networks.
In this paper we analyze a variant of OptimisticOA algorithm for nonconcave minmax problems.
Our experiments show that adaptive GAN non-adaptive gradient algorithms can be observed empirically.
arXiv Detail & Related papers (2019-12-26T22:10:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.