Beyond the 80/20 Rule: High-Entropy Minority Tokens Drive Effective Reinforcement Learning for LLM Reasoning
- URL: http://arxiv.org/abs/2506.01939v1
- Date: Mon, 02 Jun 2025 17:54:39 GMT
- Title: Beyond the 80/20 Rule: High-Entropy Minority Tokens Drive Effective Reinforcement Learning for LLM Reasoning
- Authors: Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen, Jianxin Yang, Zhenru Zhang, Yuqiong Liu, An Yang, Andrew Zhao, Yang Yue, Shiji Song, Bowen Yu, Gao Huang, Junyang Lin,
- Abstract summary: Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a powerful approach to enhancing the reasoning capabilities of Large Language Models (LLMs)<n>In this work, we undertake a pioneering exploration of RLVR through the novel perspective of token entropy patterns.<n>We observe that only a small fraction of tokens exhibit high entropy, and these tokens act as critical forks that steer the model toward diverse reasoning pathways.
- Score: 80.87085014818052
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a powerful approach to enhancing the reasoning capabilities of Large Language Models (LLMs), while its mechanisms are not yet well understood. In this work, we undertake a pioneering exploration of RLVR through the novel perspective of token entropy patterns, comprehensively analyzing how different tokens influence reasoning performance. By examining token entropy patterns in Chain-of-Thought (CoT) reasoning, we observe that only a small fraction of tokens exhibit high entropy, and these tokens act as critical forks that steer the model toward diverse reasoning pathways. Furthermore, studying how entropy patterns evolve during RLVR training reveals that RLVR largely adheres to the base model's entropy patterns, primarily adjusting the entropy of high-entropy tokens. These findings highlight the significance of high-entropy tokens (i.e., forking tokens) to RLVR. We ultimately improve RLVR by restricting policy gradient updates to forking tokens and uncover a finding even beyond the 80/20 rule: utilizing only 20% of the tokens while maintaining performance comparable to full-gradient updates on the Qwen3-8B base model and significantly surpassing full-gradient updates on the Qwen3-32B (+11.04 on AIME'25 and +7.71 on AIME'24) and Qwen3-14B (+4.79 on AIME'25 and +5.21 on AIME'24) base models, highlighting a strong scaling trend. In contrast, training exclusively on the 80% lowest-entropy tokens leads to a marked decline in performance. These findings indicate that the efficacy of RLVR primarily arises from optimizing the high-entropy tokens that decide reasoning directions. Collectively, our results highlight the potential to understand RLVR through a token-entropy perspective and optimize RLVR by leveraging high-entropy minority tokens to further improve LLM reasoning.
Related papers
- Decomposing the Entropy-Performance Exchange: The Missing Keys to Unlocking Effective Reinforcement Learning [106.68304931854038]
Reinforcement learning with verifiable rewards (RLVR) has been widely used for enhancing the reasoning abilities of large language models (LLMs)<n>We conduct a systematic empirical analysis of the entropy-performance exchange mechanism of RLVR across different levels of granularity.<n>Our analysis reveals that, in the rising stage, entropy reduction in negative samples facilitates the learning of effective reasoning patterns.<n>In the plateau stage, learning efficiency strongly correlates with high-entropy tokens present in low-perplexity samples and those located at the end of sequences.
arXiv Detail & Related papers (2025-08-04T10:08:10Z) - Stabilizing Knowledge, Promoting Reasoning: Dual-Token Constraints for RLVR [28.888781530351395]
We propose Archer, an entropy-aware RLVR approach with dual-token constraints and synchronous updates.<n> Experimental results on several mathematical reasoning and code generation benchmarks show that our approach significantly outperforms previous RLVR methods.
arXiv Detail & Related papers (2025-07-21T16:34:01Z) - The Invisible Leash: Why RLVR May Not Escape Its Origin [48.915013455847856]
Recent advances in large reasoning models highlight Reinforcement Learning with Verifiable Rewards (RLVR) as a promising method for enhancing AI's capabilities.<n>This study presents a theoretical and empirical investigation that provides fresh insights into the potential limits of RLVR.<n>We identify an entropy-reward tradeoff: while RLVR reliably enhances precision, it may progressively narrow exploration and potentially overlook correct yet underrepresented solutions.
arXiv Detail & Related papers (2025-07-20T07:04:08Z) - The Surprising Effectiveness of Negative Reinforcement in LLM Reasoning [43.310209758380886]
Reinforcement learning with verifiable rewards (RLVR) is a promising approach for training language models (LMs)<n>We decompose the learning signal into reinforcing correct responses and penalizing incorrect ones, referred to as Positive and Negative Sample Reinforcement (PSR and NSR)<n>We show that NSR works by suppressing incorrect generations and redistributing probability mass toward other plausible candidates, guided by the model's prior beliefs.
arXiv Detail & Related papers (2025-06-02T06:10:54Z) - The Hallucination Dilemma: Factuality-Aware Reinforcement Learning for Large Reasoning Models [63.98194996746229]
Large language models (LLMs) have significantly advanced in reasoning tasks through reinforcement learning (RL) optimization.<n>However, reasoning-oriented RL fine-tuning significantly increases the prevalence of hallucinations.<n>We propose Factuality-aware Step-wise Policy Optimization (FSPO), an innovative RL fine-tuning algorithm incorporating explicit factuality verification.
arXiv Detail & Related papers (2025-05-30T14:23:32Z) - Do Not Let Low-Probability Tokens Over-Dominate in RL for LLMs [25.575582861331405]
Low-probability tokens disproportionately influence model updates due to their large gradient magnitudes.<n>We propose two novel methods: Advantage Reweighting and Low-Probability Token Isolation (Lopti)<n>Our approaches promote balanced updates across tokens with varying probabilities, thereby enhancing the efficiency ofReinforcement learning.
arXiv Detail & Related papers (2025-05-19T10:14:08Z) - Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond the Base Model? [67.30809748319486]
Reinforcement Learning with Verifiable Rewards (RLVR) has recently demonstrated notable success in enhancing the reasoning performance of large language models (LLMs)<n>This study critically examines the current state of RLVR.<n>We find that the current training setup does not elicit fundamentally new reasoning patterns.
arXiv Detail & Related papers (2025-04-18T17:59:56Z) - Critical Tokens Matter: Token-Level Contrastive Estimation Enhances LLM's Reasoning Capability [53.51560766150442]
Critical tokens are elements within reasoning trajectories that significantly influence incorrect outcomes.<n>We present a novel framework for identifying these tokens through rollout sampling.<n>We show that identifying and replacing critical tokens significantly improves model accuracy.
arXiv Detail & Related papers (2024-11-29T18:58:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.