Improve Multi-Modal Embedding Learning via Explicit Hard Negative Gradient Amplifying
- URL: http://arxiv.org/abs/2506.02020v1
- Date: Wed, 28 May 2025 11:18:19 GMT
- Title: Improve Multi-Modal Embedding Learning via Explicit Hard Negative Gradient Amplifying
- Authors: Youze Xue, Dian Li, Gang Liu,
- Abstract summary: Core contrastive learning paradigm remains largely unchanged from CLIP-style models to MLLMs.<n>In this work, we conduct a detailed analysis of the gradients of the info-NCE loss with respect to the query, positive, and negative samples.<n>We propose to explicitly amplify the gradients associated with hard negative samples, thereby encouraging the model to learn more discriminative embeddings.
- Score: 7.9925771591348065
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: With the rapid advancement of multi-modal large language models (MLLMs) in recent years, the foundational Contrastive Language-Image Pretraining (CLIP) framework has been successfully extended to MLLMs, enabling more powerful and universal multi-modal embeddings for a wide range of retrieval tasks. Despite these developments, the core contrastive learning paradigm remains largely unchanged from CLIP-style models to MLLMs. Within this framework, the effective mining of hard negative samples continues to be a critical factor for enhancing performance. Prior works have introduced both offline and online strategies for hard negative mining to improve the efficiency of contrastive learning. While these approaches have led to improved multi-modal embeddings, the specific contribution of each hard negative sample to the learning process has not been thoroughly investigated. In this work, we conduct a detailed analysis of the gradients of the info-NCE loss with respect to the query, positive, and negative samples, elucidating the role of hard negatives in updating model parameters. Building upon this analysis, we propose to explicitly amplify the gradients associated with hard negative samples, thereby encouraging the model to learn more discriminative embeddings. Our multi-modal embedding model, trained with the proposed Explicit Gradient Amplifier and based on the LLaVA-OneVision-7B architecture, achieves state-of-the-art performance on the MMEB benchmark compared to previous methods utilizing the same MLLM backbone. Furthermore, when integrated with our self-developed MLLM, QQMM, our approach attains the top rank on the MMEB leaderboard. Code and models are released on https://github.com/QQ-MM/QQMM-embed.
Related papers
- From Generator to Embedder: Harnessing Innate Abilities of Multimodal LLMs via Building Zero-Shot Discriminative Embedding Model [29.879983760203256]
Multimodal Large Language Models (MLLMs) have emerged as a promising solution for universal embedding tasks.<n>But adapting their generative nature for discriminative representation learning remains a significant challenge.<n>We propose an efficient framework for universal multimodal embeddings, which bridges the gap by centering on two synergistic components.
arXiv Detail & Related papers (2025-08-01T07:31:24Z) - PUMA: Layer-Pruned Language Model for Efficient Unified Multimodal Retrieval with Modality-Adaptive Learning [54.73049408950049]
We propose a Layer-Pruned Language Model for Efficient Unified Multimodal Retrieval with Modality-Adaptive Learning.<n>Our approach improves unified multimodal retrieval from both structural and learning perspectives.
arXiv Detail & Related papers (2025-07-10T16:47:25Z) - LLaVA-MORE: A Comparative Study of LLMs and Visual Backbones for Enhanced Visual Instruction Tuning [39.54891426369773]
Trade-offs between model size, architecture, and performance remain underexplored.<n>In this paper, we introduce LLaVA-MORE, a new family of MLLMs that integrates recent language models with diverse visual backbones.<n>To ensure fair comparisons, we employ a unified training protocol applied consistently across all architectures.
arXiv Detail & Related papers (2025-03-19T18:10:12Z) - Multi-Objective Large Language Model Unlearning [3.372396620898397]
Gradient Ascent (GA) is a proactive way to decrease the prediction probability of the model on the target data.<n>We propose Multi-Objective Large Language Model Unlearning (MOLLM) algorithm to overcome gradient explosion and catastrophic forgetting.<n>Our empirical results verify that MoLLM outperforms the SOTA GA-based LLM unlearning methods in terms of unlearning effect and model utility preservation.
arXiv Detail & Related papers (2024-12-29T09:35:56Z) - Classifier-guided Gradient Modulation for Enhanced Multimodal Learning [50.7008456698935]
Gradient-Guided Modulation (CGGM) is a novel method to balance multimodal learning with gradients.
We conduct extensive experiments on four multimodal datasets: UPMC-Food 101, CMU-MOSI, IEMOCAP and BraTS.
CGGM outperforms all the baselines and other state-of-the-art methods consistently.
arXiv Detail & Related papers (2024-11-03T02:38:43Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - Mono-InternVL: Pushing the Boundaries of Monolithic Multimodal Large Language Models with Endogenous Visual Pre-training [48.455597568212944]
We present Mono-InternVL, a novel monolithic MLLM that seamlessly integrates a set of visual experts via a multimodal mixture-of-experts structure.<n>In particular, EViP is designed as a progressive learning process for visual experts, which aims to fully exploit the visual knowledge from noisy data to high-quality data.
arXiv Detail & Related papers (2024-10-10T17:59:22Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
In this paper, we analyze the MLLM instruction tuning from both theoretical and empirical perspectives.
Inspired by our findings, we propose a measurement to quantitatively evaluate the learning balance.
In addition, we introduce an auxiliary loss regularization method to promote updating of the generation distribution of MLLMs.
arXiv Detail & Related papers (2024-07-29T23:18:55Z) - LLAVADI: What Matters For Multimodal Large Language Models Distillation [77.73964744238519]
In this work, we do not propose a new efficient model structure or train small-scale MLLMs from scratch.
Our studies involve training strategies, model choices, and distillation algorithms in the knowledge distillation process.
By evaluating different benchmarks and proper strategy, even a 2.7B small-scale model can perform on par with larger models with 7B or 13B parameters.
arXiv Detail & Related papers (2024-07-28T06:10:47Z) - Improving Discriminative Multi-Modal Learning with Large-Scale
Pre-Trained Models [51.5543321122664]
This paper investigates how to better leverage large-scale pre-trained uni-modal models to enhance discriminative multi-modal learning.
We introduce Multi-Modal Low-Rank Adaptation learning (MMLoRA)
arXiv Detail & Related papers (2023-10-08T15:01:54Z) - Scaling Sentence Embeddings with Large Language Models [43.19994568210206]
In this work, we propose an in-context learning-based method aimed at improving sentence embeddings performance.
Our approach involves adapting the previous prompt-based representation method for autoregressive models.
By scaling model size, we find scaling to more than tens of billion parameters harms the performance on semantic textual similarity tasks.
arXiv Detail & Related papers (2023-07-31T13:26:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.