Cocktail-Party Audio-Visual Speech Recognition
- URL: http://arxiv.org/abs/2506.02178v1
- Date: Mon, 02 Jun 2025 19:07:51 GMT
- Title: Cocktail-Party Audio-Visual Speech Recognition
- Authors: Thai-Binh Nguyen, Ngoc-Quan Pham, Alexander Waibel,
- Abstract summary: This study introduces a novel audio-visual cocktail-party dataset designed to benchmark current AVSR systems.<n>We contribute a 1526-hour AVSR dataset comprising both talking-face and silent-face segments, enabling significant performance gains in cocktail-party environments.<n>Our approach reduces WER by 67% relative to the state-of-the-art, reducing WER from 119% to 39.2% in extreme noise, without relying on explicit segmentation cues.
- Score: 58.222892601847924
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Audio-Visual Speech Recognition (AVSR) offers a robust solution for speech recognition in challenging environments, such as cocktail-party scenarios, where relying solely on audio proves insufficient. However, current AVSR models are often optimized for idealized scenarios with consistently active speakers, overlooking the complexities of real-world settings that include both speaking and silent facial segments. This study addresses this gap by introducing a novel audio-visual cocktail-party dataset designed to benchmark current AVSR systems and highlight the limitations of prior approaches in realistic noisy conditions. Additionally, we contribute a 1526-hour AVSR dataset comprising both talking-face and silent-face segments, enabling significant performance gains in cocktail-party environments. Our approach reduces WER by 67% relative to the state-of-the-art, reducing WER from 119% to 39.2% in extreme noise, without relying on explicit segmentation cues.
Related papers
- Multilingual Audio-Visual Speech Recognition with Hybrid CTC/RNN-T Fast Conformer [59.57249127943914]
We present a multilingual Audio-Visual Speech Recognition model incorporating several enhancements to improve performance and audio noise robustness.
We increase the amount of audio-visual training data for six distinct languages, generating automatic transcriptions of unlabelled multilingual datasets.
Our proposed model achieves new state-of-the-art performance on the LRS3 dataset, reaching WER of 0.8%.
arXiv Detail & Related papers (2024-03-14T01:16:32Z) - AdVerb: Visually Guided Audio Dereverberation [49.958724234969445]
We present AdVerb, a novel audio-visual dereverberation framework.
It uses visual cues in addition to the reverberant sound to estimate clean audio.
arXiv Detail & Related papers (2023-08-23T18:20:59Z) - Audio-visual End-to-end Multi-channel Speech Separation, Dereverberation
and Recognition [52.11964238935099]
An audio-visual multi-channel speech separation, dereverberation and recognition approach is proposed in this paper.
Video input is consistently demonstrated in mask-based MVDR speech separation, DNN-WPE or spectral mapping (SpecM) based speech dereverberation front-end.
Experiments were conducted on the mixture overlapped and reverberant speech data constructed using simulation or replay of the Oxford LRS2 dataset.
arXiv Detail & Related papers (2023-07-06T10:50:46Z) - Cross-Modal Global Interaction and Local Alignment for Audio-Visual
Speech Recognition [21.477900473255264]
We propose a cross-modal global interaction and local alignment (GILA) approach for audio-visual speech recognition (AVSR)
Specifically, we design a global interaction model to capture the A-V complementary relationship on modality level, as well as a local alignment approach to model the A-V temporal consistency on frame level.
Our GILA outperforms the supervised learning state-of-the-art on public benchmarks LRS3 and LRS2.
arXiv Detail & Related papers (2023-05-16T06:41:25Z) - Robust Self-Supervised Audio-Visual Speech Recognition [29.526786921769613]
We present a self-supervised audio-visual speech recognition framework built upon Audio-Visual HuBERT (AV-HuBERT)
On the largest available AVSR benchmark dataset LRS3, our approach outperforms prior state-of-the-art by 50% (28.0% vs. 14.1%) using less than 10% of labeled data.
Our approach reduces the WER of an audio-based model by over 75% (25.8% vs. 5.8%) on average.
arXiv Detail & Related papers (2022-01-05T18:50:50Z) - Voicy: Zero-Shot Non-Parallel Voice Conversion in Noisy Reverberant
Environments [76.98764900754111]
Voice Conversion (VC) is a technique that aims to transform the non-linguistic information of a source utterance to change the perceived identity of the speaker.
We propose Voicy, a new VC framework particularly tailored for noisy speech.
Our method, which is inspired by the de-noising auto-encoders framework, is comprised of four encoders (speaker, content, phonetic and acoustic-ASR) and one decoder.
arXiv Detail & Related papers (2021-06-16T15:47:06Z) - Audio-visual Multi-channel Recognition of Overlapped Speech [79.21950701506732]
This paper presents an audio-visual multi-channel overlapped speech recognition system featuring tightly integrated separation front-end and recognition back-end.
Experiments suggest that the proposed multi-channel AVSR system outperforms the baseline audio-only ASR system by up to 6.81% (26.83% relative) and 22.22% (56.87% relative) absolute word error rate (WER) reduction on overlapped speech constructed using either simulation or replaying of the lipreading sentence 2 dataset respectively.
arXiv Detail & Related papers (2020-05-18T10:31:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.