Leveraging Natural Language Processing to Unravel the Mystery of Life: A Review of NLP Approaches in Genomics, Transcriptomics, and Proteomics
- URL: http://arxiv.org/abs/2506.02212v1
- Date: Mon, 02 Jun 2025 19:54:03 GMT
- Title: Leveraging Natural Language Processing to Unravel the Mystery of Life: A Review of NLP Approaches in Genomics, Transcriptomics, and Proteomics
- Authors: Ella Rannon, David Burstein,
- Abstract summary: This review explores the application of NLP methods to biological sequence data, focusing on genomics, transcriptomics, and transformers.<n>We examine how various NLP methods, from classic approaches like word2vec to advanced models employing hyena operators, are being adapted to analyze DNA, RNA, protein sequences, and entire genomes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Natural Language Processing (NLP) has transformed various fields beyond linguistics by applying techniques originally developed for human language to the analysis of biological sequences. This review explores the application of NLP methods to biological sequence data, focusing on genomics, transcriptomics, and proteomics. We examine how various NLP methods, from classic approaches like word2vec to advanced models employing transformers and hyena operators, are being adapted to analyze DNA, RNA, protein sequences, and entire genomes. The review also examines tokenization strategies and model architectures, evaluating their strengths, limitations, and suitability for different biological tasks. We further cover recent advances in NLP applications for biological data, such as structure prediction, gene expression, and evolutionary analysis, highlighting the potential of these methods for extracting meaningful insights from large-scale genomic data. As language models continue to advance, their integration into bioinformatics holds immense promise for advancing our understanding of biological processes in all domains of life.
Related papers
- Large Language Models in Bioinformatics: A Survey [13.722344139230827]
Large Language Models (LLMs) are revolutionizing bioinformatics, enabling advanced analysis of DNA, RNA, proteins, and single-cell data.<n>This survey provides a systematic review of recent advancements, focusing on genomic sequence modeling, RNA structure prediction, protein function inference, and single-cell transcriptomics.
arXiv Detail & Related papers (2025-03-06T14:38:20Z) - Biological Sequence with Language Model Prompting: A Survey [14.270959261105968]
Large Language models (LLMs) have emerged as powerful tools for addressing challenges across diverse domains.<n>This paper systematically investigates the application of prompt-based methods with LLMs to biological sequences.
arXiv Detail & Related papers (2025-03-06T06:28:36Z) - Life-Code: Central Dogma Modeling with Multi-Omics Sequence Unification [55.98854157265578]
Life-Code is a comprehensive framework that spans different biological functions.<n>We propose a unified pipeline to integrate multi-omics data by reverse-transcribing RNA and reverse-translating amino acids into nucleotide-based sequences.<n>Life-Code achieves state-of-the-art results on various tasks across three omics, highlighting its potential for advancing multi-omics analysis and interpretation.
arXiv Detail & Related papers (2025-02-11T06:53:59Z) - GENERator: A Long-Context Generative Genomic Foundation Model [66.46537421135996]
We present GENERator, a generative genomic foundation model featuring a context length of 98k base pairs (bp) and 1.2B parameters.<n>Trained on an expansive dataset comprising 386B bp of DNA, the GENERator demonstrates state-of-the-art performance across both established and newly proposed benchmarks.<n>It also shows significant promise in sequence optimization, particularly through the prompt-responsive generation of enhancer sequences with specific activity profiles.
arXiv Detail & Related papers (2025-02-11T05:39:49Z) - COMET: Benchmark for Comprehensive Biological Multi-omics Evaluation Tasks and Language Models [56.81513758682858]
COMET aims to evaluate models across single-omics, cross-omics, and multi-omics tasks.<n>First, we curate and develop a diverse collection of downstream tasks and datasets covering key structural and functional aspects in DNA, RNA, and proteins.<n>Then, we evaluate existing foundational language models for DNA, RNA, and proteins, as well as the newly proposed multi-omics method.
arXiv Detail & Related papers (2024-12-13T18:42:00Z) - VQDNA: Unleashing the Power of Vector Quantization for Multi-Species Genomic Sequence Modeling [60.91599380893732]
VQDNA is a general-purpose framework that renovates genome tokenization from the perspective of genome vocabulary learning.
By leveraging vector-quantized codebooks as learnable vocabulary, VQDNA can adaptively tokenize genomes into pattern-aware embeddings.
arXiv Detail & Related papers (2024-05-13T20:15:03Z) - An Evaluation of Large Language Models in Bioinformatics Research [52.100233156012756]
We study the performance of large language models (LLMs) on a wide spectrum of crucial bioinformatics tasks.
These tasks include the identification of potential coding regions, extraction of named entities for genes and proteins, detection of antimicrobial and anti-cancer peptides, molecular optimization, and resolution of educational bioinformatics problems.
Our findings indicate that, given appropriate prompts, LLMs like GPT variants can successfully handle most of these tasks.
arXiv Detail & Related papers (2024-02-21T11:27:31Z) - Efficient and Scalable Fine-Tune of Language Models for Genome
Understanding [49.606093223945734]
We present textscLingo: textscLanguage prefix ftextscIne-tuning for textscGentextscOmes.
Unlike DNA foundation models, textscLingo strategically leverages natural language foundation models' contextual cues.
textscLingo further accommodates numerous downstream fine-tune tasks by an adaptive rank sampling method.
arXiv Detail & Related papers (2024-02-12T21:40:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.