Motion aware video generative model
- URL: http://arxiv.org/abs/2506.02244v1
- Date: Mon, 02 Jun 2025 20:42:54 GMT
- Title: Motion aware video generative model
- Authors: Bowen Xue, Giuseppe Claudio Guarnera, Shuang Zhao, Zahra Montazeri,
- Abstract summary: Diffusion-based video generation has yielded unprecedented quality in visual content and semantic coherence.<n>Current approaches rely on statistical learning without explicitly modeling the underlying physics of motion.<n>This paper introduces a physics-informed frequency domain approach to enhance the physical plausibility of generated videos.
- Score: 12.5036873986483
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in diffusion-based video generation have yielded unprecedented quality in visual content and semantic coherence. However, current approaches predominantly rely on statistical learning from vast datasets without explicitly modeling the underlying physics of motion, resulting in subtle yet perceptible non-physical artifacts that diminish the realism of generated videos. This paper introduces a physics-informed frequency domain approach to enhance the physical plausibility of generated videos. We first conduct a systematic analysis of the frequency-domain characteristics of diverse physical motions (translation, rotation, scaling), revealing that each motion type exhibits distinctive and identifiable spectral signatures. Building on this theoretical foundation, we propose two complementary components: (1) a physical motion loss function that quantifies and optimizes the conformity of generated videos to ideal frequency-domain motion patterns, and (2) a frequency domain enhancement module that progressively learns to adjust video features to conform to physical motion constraints while preserving original network functionality through a zero-initialization strategy. Experiments across multiple video diffusion architectures demonstrate that our approach significantly enhances motion quality and physical plausibility without compromising visual quality or semantic alignment. Our frequency-domain physical motion framework generalizes effectively across different video generation architectures, offering a principled approach to incorporating physical constraints into deep learning-based video synthesis pipelines. This work seeks to establish connections between data-driven models and physics-based motion models.
Related papers
- Physics-Grounded Motion Forecasting via Equation Discovery for Trajectory-Guided Image-to-Video Generation [54.42523027597904]
We introduce a novel framework that integrates symbolic regression and trajectory-guided image-to-video (I2V) models for physics-grounded video forecasting.<n>Our approach extracts motion trajectories from input videos, uses a retrieval-based pre-training mechanism to enhance symbolic regression, and discovers equations of motion to forecast physically accurate future trajectories.
arXiv Detail & Related papers (2025-07-09T13:28:42Z) - SynMotion: Semantic-Visual Adaptation for Motion Customized Video Generation [56.90807453045657]
SynMotion is a motion-customized video generation model that jointly leverages semantic guidance and visual adaptation.<n>At the semantic level, we introduce the dual-em semantic comprehension mechanism which disentangles subject and motion representations.<n>At the visual level, we integrate efficient motion adapters into a pre-trained video generation model to enhance motion fidelity and temporal coherence.
arXiv Detail & Related papers (2025-06-30T10:09:32Z) - MAGIC: Motion-Aware Generative Inference via Confidence-Guided LLM [14.522189177415724]
MAGIC is a training-free framework for single-image physical property inference and dynamic generation.<n>Our framework generates motion-rich videos from a static image and closes the visual-to-physical gap through a confidence-driven feedback loop.<n> Experiments show that MAGIC outperforms existing physics-aware generative methods in inference accuracy and achieves greater temporal coherence.
arXiv Detail & Related papers (2025-05-22T09:40:34Z) - RAGME: Retrieval Augmented Video Generation for Enhanced Motion Realism [73.38167494118746]
We propose a framework to improve the realism of motion in generated videos.<n>We advocate for the incorporation of a retrieval mechanism during the generation phase.<n>Our pipeline is designed to apply to any text-to-video diffusion model.
arXiv Detail & Related papers (2025-04-09T08:14:05Z) - VideoJAM: Joint Appearance-Motion Representations for Enhanced Motion Generation in Video Models [71.9811050853964]
VideoJAM is a novel framework that instills an effective motion prior to video generators.<n>VideoJAM achieves state-of-the-art performance in motion coherence.<n>These findings emphasize that appearance and motion can be complementary and, when effectively integrated, enhance both the visual quality and the coherence of video generation.
arXiv Detail & Related papers (2025-02-04T17:07:10Z) - PhysMotion: Physics-Grounded Dynamics From a Single Image [24.096925413047217]
We introduce PhysMotion, a novel framework that leverages principled physics-based simulations to guide intermediate 3D representations generated from a single image and input conditions.<n>Our approach addresses the limitations of traditional data-driven generative models and result in more consistent physically plausible motions.
arXiv Detail & Related papers (2024-11-26T07:59:11Z) - Spectral Motion Alignment for Video Motion Transfer using Diffusion Models [54.32923808964701]
Spectral Motion Alignment (SMA) is a framework that refines and aligns motion vectors using Fourier and wavelet transforms.<n> SMA learns motion patterns by incorporating frequency-domain regularization, facilitating the learning of whole-frame global motion dynamics.<n>Extensive experiments demonstrate SMA's efficacy in improving motion transfer while maintaining computational efficiency and compatibility across various video customization frameworks.
arXiv Detail & Related papers (2024-03-22T14:47:18Z) - Diffusion Priors for Dynamic View Synthesis from Monocular Videos [59.42406064983643]
Dynamic novel view synthesis aims to capture the temporal evolution of visual content within videos.
We first finetune a pretrained RGB-D diffusion model on the video frames using a customization technique.
We distill the knowledge from the finetuned model to a 4D representations encompassing both dynamic and static Neural Radiance Fields.
arXiv Detail & Related papers (2024-01-10T23:26:41Z) - Continuous-Time Video Generation via Learning Motion Dynamics with
Neural ODE [26.13198266911874]
We propose a novel video generation approach that learns separate distributions for motion and appearance.
We employ a two-stage approach where the first stage converts a noise vector to a sequence of keypoints in arbitrary frame rates, and the second stage synthesizes videos based on the given keypoints sequence and the appearance noise vector.
arXiv Detail & Related papers (2021-12-21T03:30:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.