Generalized Category Discovery via Reciprocal Learning and Class-Wise Distribution Regularization
- URL: http://arxiv.org/abs/2506.02334v1
- Date: Tue, 03 Jun 2025 00:12:39 GMT
- Title: Generalized Category Discovery via Reciprocal Learning and Class-Wise Distribution Regularization
- Authors: Duo Liu, Zhiquan Tan, Linglan Zhao, Zhongqiang Zhang, Xiangzhong Fang, Weiran Huang,
- Abstract summary: Generalized Category Discovery (GCD) aims to identify unlabeled samples by leveraging the base knowledge from labeled ones.<n>Recent parametric-based methods suffer from inferior base discrimination due to unreliable self-supervision.<n>We propose a Reciprocal Learning Framework (RLF) that introduces an auxiliary branch devoted to base classification.
- Score: 6.696520328216944
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generalized Category Discovery (GCD) aims to identify unlabeled samples by leveraging the base knowledge from labeled ones, where the unlabeled set consists of both base and novel classes. Since clustering methods are time-consuming at inference, parametric-based approaches have become more popular. However, recent parametric-based methods suffer from inferior base discrimination due to unreliable self-supervision. To address this issue, we propose a Reciprocal Learning Framework (RLF) that introduces an auxiliary branch devoted to base classification. During training, the main branch filters the pseudo-base samples to the auxiliary branch. In response, the auxiliary branch provides more reliable soft labels for the main branch, leading to a virtuous cycle. Furthermore, we introduce Class-wise Distribution Regularization (CDR) to mitigate the learning bias towards base classes. CDR essentially increases the prediction confidence of the unlabeled data and boosts the novel class performance. Combined with both components, our proposed method, RLCD, achieves superior performance in all classes with negligible extra computation. Comprehensive experiments across seven GCD datasets validate its superiority. Our codes are available at https://github.com/APORduo/RLCD.
Related papers
- DebGCD: Debiased Learning with Distribution Guidance for Generalized Category Discovery [14.222473509173357]
We tackle the problem of Generalized Category Discovery (GCD)<n>In GCD, an inherent label bias exists between known and unknown classes due to the lack of ground-truth labels for the latter.<n>We introduce DebGCD, a underlineDebiased learning with distribution guidance framework for underlineGCD.
arXiv Detail & Related papers (2025-04-07T07:56:01Z) - Generalized Class Discovery in Instance Segmentation [7.400926717561454]
We propose an instance-wise temperature assignment (ITA) method for contrastive learning and class-wise reliability criteria for pseudo-labels.<n>We evaluate our proposed method by conducting experiments on two settings: COCO$_half$ + LVIS and LVIS + Visual Genome.
arXiv Detail & Related papers (2025-02-12T06:26:05Z) - Adaptive Margin Global Classifier for Exemplar-Free Class-Incremental Learning [3.4069627091757178]
Existing methods mainly focus on handling biased learning.
We introduce a Distribution-Based Global (DBGC) to avoid bias factors in existing methods, such as data imbalance and sampling.
More importantly, the compromised distributions of old classes are simulated via a simple operation, variance (VE).
This loss is proven equivalent to an Adaptive Margin Softmax Cross Entropy (AMarX)
arXiv Detail & Related papers (2024-09-20T07:07:23Z) - A Hard-to-Beat Baseline for Training-free CLIP-based Adaptation [121.0693322732454]
Contrastive Language-Image Pretraining (CLIP) has gained popularity for its remarkable zero-shot capacity.
Recent research has focused on developing efficient fine-tuning methods to enhance CLIP's performance in downstream tasks.
We revisit a classical algorithm, Gaussian Discriminant Analysis (GDA), and apply it to the downstream classification of CLIP.
arXiv Detail & Related papers (2024-02-06T15:45:27Z) - Dynamic Conceptional Contrastive Learning for Generalized Category
Discovery [76.82327473338734]
Generalized category discovery (GCD) aims to automatically cluster partially labeled data.
Unlabeled data contain instances that are not only from known categories of the labeled data but also from novel categories.
One effective way for GCD is applying self-supervised learning to learn discriminate representation for unlabeled data.
We propose a Dynamic Conceptional Contrastive Learning framework, which can effectively improve clustering accuracy.
arXiv Detail & Related papers (2023-03-30T14:04:39Z) - Parametric Classification for Generalized Category Discovery: A Baseline
Study [70.73212959385387]
Generalized Category Discovery (GCD) aims to discover novel categories in unlabelled datasets using knowledge learned from labelled samples.
We investigate the failure of parametric classifiers, verify the effectiveness of previous design choices when high-quality supervision is available, and identify unreliable pseudo-labels as a key problem.
We propose a simple yet effective parametric classification method that benefits from entropy regularisation, achieves state-of-the-art performance on multiple GCD benchmarks and shows strong robustness to unknown class numbers.
arXiv Detail & Related papers (2022-11-21T18:47:11Z) - Cycle Label-Consistent Networks for Unsupervised Domain Adaptation [57.29464116557734]
Domain adaptation aims to leverage a labeled source domain to learn a classifier for the unlabeled target domain with a different distribution.
We propose a simple yet efficient domain adaptation method, i.e. Cycle Label-Consistent Network (CLCN), by exploiting the cycle consistency of classification label.
We demonstrate the effectiveness of our approach on MNIST-USPS-SVHN, Office-31, Office-Home and Image CLEF-DA benchmarks.
arXiv Detail & Related papers (2022-05-27T13:09:08Z) - Relieving Long-tailed Instance Segmentation via Pairwise Class Balance [85.53585498649252]
Long-tailed instance segmentation is a challenging task due to the extreme imbalance of training samples among classes.
It causes severe biases of the head classes (with majority samples) against the tailed ones.
We propose a novel Pairwise Class Balance (PCB) method, built upon a confusion matrix which is updated during training to accumulate the ongoing prediction preferences.
arXiv Detail & Related papers (2022-01-08T07:48:36Z) - Binary Classification from Multiple Unlabeled Datasets via Surrogate Set
Classification [94.55805516167369]
We propose a new approach for binary classification from m U-sets for $mge2$.
Our key idea is to consider an auxiliary classification task called surrogate set classification (SSC)
arXiv Detail & Related papers (2021-02-01T07:36:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.