NextQuill: Causal Preference Modeling for Enhancing LLM Personalization
- URL: http://arxiv.org/abs/2506.02368v1
- Date: Tue, 03 Jun 2025 02:08:55 GMT
- Title: NextQuill: Causal Preference Modeling for Enhancing LLM Personalization
- Authors: Xiaoyan Zhao, Juntao You, Yang Zhang, Wenjie Wang, Hong Cheng, Fuli Feng, See-Kiong Ng, Tat-Seng Chua,
- Abstract summary: We introduce NextQuill, a novel personalization framework grounded in causal preference modeling.<n>Building on this insight, NextQuill introduces two complementary alignment strategies.<n> Experiments across multiple personalization benchmarks demonstrate that NextQuill significantly improves personalization quality.
- Score: 82.15961484963256
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Personalizing large language models (LLMs) for individual users has become increasingly important as they are progressively integrated into real-world applications to support users' daily lives. However, existing personalization approaches often fail to distinguish which components of model predictions and training data truly reflect user preferences, leading to superficial personalization alignment. In this paper, we introduce NextQuill, a novel LLM personalization alignment framework grounded in causal preference modeling. We approach personalization from a causal perspective, treating both model predictions and ground-truth data generation as outcomes influenced by user preferences, along with other factors. We define the true preference effect as the causal impact of user history (which reflects preferences) on each token prediction or data generation instance, estimated through causal intervention techniques. Building on this insight, NextQuill introduces two complementary alignment strategies: (1) aligning model-internal causal preference effects on predictions with those reflected in ground-truth data, rather than indiscriminately fitting predictions, and (2) focusing on fitting preference-bearing tokens identified via ground-truth data preference effects, rather than treating all tokens uniformly. By integrating these strategies, NextQuill shifts the alignment process toward learning from causal preference effects, facilitating more effective and personalized adaptation. Experiments across multiple personalization benchmarks demonstrate that NextQuill significantly improves personalization quality, offering a principled, causal foundation for LLM personalization. Our codes are available on https://github.com/juntaoyou/NextQuill.
Related papers
- HyPerAlign: Interpretable Personalized LLM Alignment via Hypothesis Generation [24.67727411391369]
HyPerAlign is an interpretable and sample-efficient hypothesis-driven personalization approach for large language models.<n>We conduct experiments on two different personalization tasks, namely authorship attribution and deliberative alignment.<n>Results demonstrate the superiority of hypothesis-driven personalization compared to preference-based fine-tuning methods.
arXiv Detail & Related papers (2025-04-29T18:01:46Z) - LoRe: Personalizing LLMs via Low-Rank Reward Modeling [47.12507639759984]
We introduce a novel framework that leverages low-rank preference modeling to efficiently learn and generalize user-specific reward functions.<n>We validate our method on multiple preference datasets, demonstrating superior generalization to unseen users and improved accuracy in preference prediction tasks.
arXiv Detail & Related papers (2025-04-20T01:16:24Z) - FSPO: Few-Shot Preference Optimization of Synthetic Preference Data in LLMs Elicits Effective Personalization to Real Users [111.56469697145519]
We propose Few-Shot Preference Optimization, which reframes reward modeling as a meta-learning problem.<n>Under this framework, an LLM learns to quickly adapt to a user via a few labeled preferences from that user, constructing a personalized reward function for them.<n>We generate over 1M synthetic personalized preferences using publicly available LLMs.<n>We evaluate FSPO on personalized open-ended generation for up to 1,500 synthetic users across three domains: movie reviews, pedagogical adaptation based on educational background, and general question answering, along with a controlled human study.
arXiv Detail & Related papers (2025-02-26T17:08:46Z) - Personalized Preference Fine-tuning of Diffusion Models [75.22218338096316]
We introduce PPD, a multi-reward optimization objective that aligns diffusion models with personalized preferences.<n>With PPD, a diffusion model learns the individual preferences of a population of users in a few-shot way.<n>Our approach achieves an average win rate of 76% over Stable Cascade, generating images that more accurately reflect specific user preferences.
arXiv Detail & Related papers (2025-01-11T22:38:41Z) - Few-shot Steerable Alignment: Adapting Rewards and LLM Policies with Neural Processes [50.544186914115045]
Large language models (LLMs) are increasingly embedded in everyday applications.<n> Ensuring their alignment with the diverse preferences of individual users has become a critical challenge.<n>We present a novel framework for few-shot steerable alignment.
arXiv Detail & Related papers (2024-12-18T16:14:59Z) - Optimizing LLMs with Direct Preferences: A Data Efficiency Perspective [4.548047308860141]
This study investigates the impact of different type of preference data on model performance.
It aims to reduce their dependency on extensive amounts of preference data, which is expensive to collect.
arXiv Detail & Related papers (2024-10-22T00:11:41Z) - ComPO: Community Preferences for Language Model Personalization [122.54846260663922]
ComPO is a method to personalize preference optimization in language models.
We collect and release ComPRed, a question answering dataset with community-level preferences from Reddit.
arXiv Detail & Related papers (2024-10-21T14:02:40Z) - PAD: Personalized Alignment of LLMs at Decoding-Time [10.347782385286582]
This paper presents a novel framework designed to align LLM outputs with diverse personalized preferences during the inference phase.<n>The Personalized Alignment at Decoding-time (PAD) framework decouples the text generation process from personalized preferences.<n>PAD not only outperforms existing training-based alignment methods in terms of aligning with diverse preferences but also shows significant generalizability to preferences unseen during training.
arXiv Detail & Related papers (2024-10-05T08:00:55Z) - BAPO: Base-Anchored Preference Optimization for Overcoming Forgetting in Large Language Models Personalization [26.526171463511332]
This paper examines the impact of personalized preference optimization on Large Language Models (LLMs)
BAPO effectively adapts to diverse user preferences while minimally affecting global knowledge or general alignment.
arXiv Detail & Related papers (2024-06-30T13:30:04Z) - Personalized Language Modeling from Personalized Human Feedback [45.16986573937782]
Personalized large language models (LLMs) are designed to tailor responses to individual user preferences.<n>We propose Personalized-RLHF, an efficient framework that utilizes a lightweight user model to capture individual user preferences.<n>We show that personalized LLMs trained using P-RLHF generate responses that are more closely aligned with individual user preferences.
arXiv Detail & Related papers (2024-02-06T04:18:58Z) - Data-Driven Offline Decision-Making via Invariant Representation
Learning [97.49309949598505]
offline data-driven decision-making involves synthesizing optimized decisions with no active interaction.
A key challenge is distributional shift: when we optimize with respect to the input into a model trained from offline data, it is easy to produce an out-of-distribution (OOD) input that appears erroneously good.
In this paper, we formulate offline data-driven decision-making as domain adaptation, where the goal is to make accurate predictions for the value of optimized decisions.
arXiv Detail & Related papers (2022-11-21T11:01:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.