Asymptotically Optimal Linear Best Feasible Arm Identification with Fixed Budget
- URL: http://arxiv.org/abs/2506.02386v1
- Date: Tue, 03 Jun 2025 02:56:26 GMT
- Title: Asymptotically Optimal Linear Best Feasible Arm Identification with Fixed Budget
- Authors: Jie Bian, Vincent Y. F. Tan,
- Abstract summary: We introduce a novel algorithm for best feasible arm identification that guarantees an exponential decay in the error probability.<n>We validate our algorithm through comprehensive empirical evaluations across various problem instances with different levels of complexity.
- Score: 55.938644481736446
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The challenge of identifying the best feasible arm within a fixed budget has attracted considerable interest in recent years. However, a notable gap remains in the literature: the exact exponential rate at which the error probability approaches zero has yet to be established, even in the relatively simple setting of $K$-armed bandits with Gaussian noise. In this paper, we address this gap by examining the problem within the context of linear bandits. We introduce a novel algorithm for best feasible arm identification that guarantees an exponential decay in the error probability. Remarkably, the decay rate -- characterized by the exponent -- matches the theoretical lower bound derived using information-theoretic principles. Our approach leverages a posterior sampling framework embedded within a game-based sampling rule involving a min-learner and a max-learner. This strategy shares its foundations with Thompson sampling, but is specifically tailored to optimize the identification process under fixed-budget constraints. Furthermore, we validate the effectiveness of our algorithm through comprehensive empirical evaluations across various problem instances with different levels of complexity. The results corroborate our theoretical findings and demonstrate that our method outperforms several benchmark algorithms in terms of both accuracy and efficiency.
Related papers
- Optimal Multi-Fidelity Best-Arm Identification [65.23078799972188]
In bandit best-arm identification, an algorithm is tasked with finding the arm with highest mean reward with a specified accuracy as fast as possible.<n>We study multi-fidelity best-arm identification, in which the can choose to sample an arm at a lower fidelity (less accurate mean estimate) for a lower cost.<n>Several methods have been proposed for tackling this problem, but their optimality remain elusive, notably due to loose lower bounds on the total cost needed to identify the best arm.
arXiv Detail & Related papers (2024-06-05T08:02:40Z) - Best Arm Identification with Fixed Budget: A Large Deviation Perspective [54.305323903582845]
We present sred, a truly adaptive algorithm that can reject arms in it any round based on the observed empirical gaps between the rewards of various arms.
In particular, we present sred, a truly adaptive algorithm that can reject arms in it any round based on the observed empirical gaps between the rewards of various arms.
arXiv Detail & Related papers (2023-12-19T13:17:43Z) - Adversarially robust clustering with optimality guarantees [7.0830450321883935]
We consider the problem of clustering data points coming from sub-Gaussian mixtures.
Existing methods that provably achieve the optimal mislabeling error, such as the Lloyd algorithm, are usually vulnerable to outliers.
We propose a simple robust algorithm based on the coordinatewise median that obtains the optimal mislabeling rate even when we allow adversarial outliers to be present.
arXiv Detail & Related papers (2023-06-16T17:17:07Z) - Mean-based Best Arm Identification in Stochastic Bandits under Reward
Contamination [80.53485617514707]
This paper proposes two algorithms, a gap-based algorithm and one based on the successive elimination, for best arm identification in sub-Gaussian bandits.
Specifically, for the gap-based algorithm, the sample complexity is optimal up to constant factors, while for the successive elimination, it is optimal up to logarithmic factors.
arXiv Detail & Related papers (2021-11-14T21:49:58Z) - An Asymptotically Optimal Primal-Dual Incremental Algorithm for
Contextual Linear Bandits [129.1029690825929]
We introduce a novel algorithm improving over the state-of-the-art along multiple dimensions.
We establish minimax optimality for any learning horizon in the special case of non-contextual linear bandits.
arXiv Detail & Related papers (2020-10-23T09:12:47Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.