Consultant Decoding: Yet Another Synergistic Mechanism
- URL: http://arxiv.org/abs/2506.02391v1
- Date: Tue, 03 Jun 2025 03:13:27 GMT
- Title: Consultant Decoding: Yet Another Synergistic Mechanism
- Authors: Chuanghao Ding, Jiaping Wang, Ziqing Yang, Xiaoliang Wang, Dahua Lin, Cam-Tu Nguyen, Fei Tan,
- Abstract summary: Consultant Decoding (CD) verifies candidate drafts using token-level likelihoods computed solely by the large language model.<n>CD achieves up to a 2.5-fold increase in inference speed compared to the target model, while maintaining comparable generation quality.
- Score: 49.996656694586164
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The synergistic mechanism based on Speculative Decoding (SD) has garnered considerable attention as a simple yet effective approach for accelerating the inference of large language models (LLMs). Nonetheless, the high rejection rates require repeated LLMs calls to validate draft tokens, undermining the overall efficiency gain of SD. In this work, we revisit existing verification mechanisms and propose a novel synergetic mechanism Consultant Decoding (CD). Unlike SD, which relies on a metric derived from importance sampling for verification, CD verifies candidate drafts using token-level likelihoods computed solely by the LLM. CD achieves up to a 2.5-fold increase in inference speed compared to the target model, while maintaining comparable generation quality (around 100% of the target model's performance). Interestingly, this is achieved by combining models whose parameter sizes differ by two orders of magnitude. In addition, CD reduces the call frequency of the large target model to below 10%, particularly in more demanding tasks. CD's performance was even found to surpass that of the large target model, which theoretically represents the upper bound for speculative decoding.
Related papers
- R-Stitch: Dynamic Trajectory Stitching for Efficient Reasoning [60.37610817226533]
Chain-of-thought (CoT) reasoning encourages step-by-step intermediate reasoning during inference.<n>CoT introduces substantial computational overhead due to its reliance on autoregressive decoding over long token sequences.<n>We present R-Stitch, a token-level, confidence-based hybrid decoding framework that accelerates CoT inference.
arXiv Detail & Related papers (2025-07-23T08:14:36Z) - SpecRouter: Adaptive Routing for Multi-Level Speculative Decoding in Large Language Models [21.933379266533098]
Large Language Models (LLMs) present a critical trade-off between inference quality and computational cost.<n>Existing serving strategies often employ fixed model scales or static two-stage speculative decoding.<n>This paper introduces systemname, a novel framework that reimagines LLM inference as an adaptive routing problem.
arXiv Detail & Related papers (2025-05-12T15:46:28Z) - Token Level Routing Inference System for Edge Devices [21.721914273034972]
We present a novel collaborative decoding inference system that allows small models to perform on-device inference while selectively consulting a cloud-based large model for critical token generation.<n>Remarkably, the system achieves a 60% performance gain on CommonsenseQA using only a 0.5B model on an M1 MacBook, with under 7% of tokens generation uploaded to the large model in the cloud.
arXiv Detail & Related papers (2025-04-10T15:54:19Z) - Reward-Guided Speculative Decoding for Efficient LLM Reasoning [80.55186052123196]
We introduce Reward-Guided Speculative Decoding (RSD), a novel framework aimed at improving the efficiency of inference in large language models (LLMs)<n>RSD incorporates a controlled bias to prioritize high-reward outputs, in contrast to existing speculative decoding methods that enforce strict unbiasedness.<n>RSD delivers significant efficiency gains against decoding with the target model only, while achieving significant better accuracy than parallel decoding method on average.
arXiv Detail & Related papers (2025-01-31T17:19:57Z) - Closer Look at Efficient Inference Methods: A Survey of Speculative Decoding [1.3479499607624648]
Speculative decoding addresses bottleneck by introducing a two-stage framework: drafting and verification.<n>A smaller, efficient model generates a preliminary draft, which is then refined by a larger, more sophisticated model.<n>This paper provides a comprehensive survey of speculative decoding methods, categorizing them into draft-centric and model-centric approaches.
arXiv Detail & Related papers (2024-11-20T09:46:30Z) - Improving Multi-candidate Speculative Decoding [1.6291177798903276]
Speculative Decoding (SD) is a technique to accelerate the inference of Large Language Models (LLMs)<n>In this work, we introduce a new version of MCSD that includes a target model multi-candidate generation.<n>We also evaluate the effects of using the target model multi-candidate process with different draft models on output quality.
arXiv Detail & Related papers (2024-09-16T18:20:38Z) - Graph-Structured Speculative Decoding [52.94367724136063]
Speculative decoding has emerged as a promising technique to accelerate the inference of Large Language Models.
We introduce an innovative approach utilizing a directed acyclic graph (DAG) to manage the drafted hypotheses.
We observe a remarkable speedup of 1.73$times$ to 1.96$times$, significantly surpassing standard speculative decoding.
arXiv Detail & Related papers (2024-07-23T06:21:24Z) - Refine, Discriminate and Align: Stealing Encoders via Sample-Wise Prototypes and Multi-Relational Extraction [57.16121098944589]
RDA is a pioneering approach designed to address two primary deficiencies prevalent in previous endeavors aiming at stealing pre-trained encoders.
It is accomplished via a sample-wise prototype, which consolidates the target encoder's representations for a given sample's various perspectives.
For more potent efficacy, we develop a multi-relational extraction loss that trains the surrogate encoder to Discriminate mismatched embedding-prototype pairs.
arXiv Detail & Related papers (2023-12-01T15:03:29Z) - DistillSpec: Improving Speculative Decoding via Knowledge Distillation [70.61777015900272]
Speculative decoding (SD) accelerates large language model inference by employing a faster draft model for generating multiple tokens.
We propose DistillSpec that uses knowledge distillation to better align the draft model with the target model, before applying SD.
We show that DistillSpec yields impressive 10 - 45% speedups over standard SD on a range of standard benchmarks.
arXiv Detail & Related papers (2023-10-12T16:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.