Should LLM Safety Be More Than Refusing Harmful Instructions?
- URL: http://arxiv.org/abs/2506.02442v2
- Date: Wed, 04 Jun 2025 05:56:40 GMT
- Title: Should LLM Safety Be More Than Refusing Harmful Instructions?
- Authors: Utsav Maskey, Mark Dras, Usman Naseem,
- Abstract summary: This paper presents a systematic evaluation of Large Language Models' (LLMs) behavior on long-tail distributed (encrypted) texts.<n>We introduce a two-dimensional framework for assessing LLM safety.<n>We demonstrate that models that possess capabilities to decrypt ciphers may be susceptible to mismatched-generalization attacks.
- Score: 6.5137518437747
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a systematic evaluation of Large Language Models' (LLMs) behavior on long-tail distributed (encrypted) texts and their safety implications. We introduce a two-dimensional framework for assessing LLM safety: (1) instruction refusal-the ability to reject harmful obfuscated instructions, and (2) generation safety-the suppression of generating harmful responses. Through comprehensive experiments, we demonstrate that models that possess capabilities to decrypt ciphers may be susceptible to mismatched-generalization attacks: their safety mechanisms fail on at least one safety dimension, leading to unsafe responses or over-refusal. Based on these findings, we evaluate a number of pre-LLM and post-LLM safeguards and discuss their strengths and limitations. This work contributes to understanding the safety of LLM in long-tail text scenarios and provides directions for developing robust safety mechanisms.
Related papers
- ARMOR: Aligning Secure and Safe Large Language Models via Meticulous Reasoning [49.47193675702453]
Large Language Models (LLMs) have demonstrated remarkable generative capabilities.<n>LLMs remain vulnerable to malicious instructions that can bypass safety constraints.<n>We propose a reasoning-based safety alignment framework, ARMOR, that replaces the ad-hoc chains of thought reasoning process with human-aligned, structured one.
arXiv Detail & Related papers (2025-07-14T09:05:54Z) - Subtle Risks, Critical Failures: A Framework for Diagnosing Physical Safety of LLMs for Embodied Decision Making [31.555271917529872]
We introduce SAFEL, the framework for systematically evaluating the physical safety of large language models (LLMs) in embodied decision making.<n>We introduce EMBODYGUARD, a PDDL-grounded benchmark containing 942 LLM-generated scenarios covering both overtly malicious and contextually hazardous instructions.<n>Our results highlight critical limitations in current LLMs and provide a foundation for more targeted, modular improvements in safe embodied reasoning.
arXiv Detail & Related papers (2025-05-26T13:01:14Z) - Safety is Not Only About Refusal: Reasoning-Enhanced Fine-tuning for Interpretable LLM Safety [31.933503076797148]
Large Language Models (LLMs) are vulnerable to jailbreak attacks that exploit weaknesses in traditional safety alignment.<n>We propose Reasoning-enhanced Finetuning for interpretable LLM Safety (Rational)<n>Rational trains models to engage in explicit safe reasoning before response.
arXiv Detail & Related papers (2025-03-06T22:47:45Z) - Reasoning-to-Defend: Safety-Aware Reasoning Can Defend Large Language Models from Jailbreaking [26.812138599896997]
We propose Reasoning-to-Defend (R2D), a novel training paradigm that integrates a safety-aware reasoning mechanism into Large Language Models' generation.<n>R2D forms safety pivot tokens as indicators of the safety status of responses.<n>We show that R2D effectively mitigates various attacks and improves overall safety, while maintaining the original performances.
arXiv Detail & Related papers (2025-02-18T15:48:46Z) - Root Defence Strategies: Ensuring Safety of LLM at the Decoding Level [10.476222570886483]
Large language models (LLMs) have demonstrated immense utility across various industries.<n>As LLMs advance, the risk of harmful outputs increases due to incorrect or malicious instruction prompts.<n>This paper examines the LLMs' capability to recognize harmful outputs, revealing and quantifying their proficiency in assessing the danger of previous tokens.
arXiv Detail & Related papers (2024-10-09T12:09:30Z) - Multimodal Situational Safety [73.63981779844916]
We present the first evaluation and analysis of a novel safety challenge termed Multimodal Situational Safety.<n>For an MLLM to respond safely, whether through language or action, it often needs to assess the safety implications of a language query within its corresponding visual context.<n>We develop the Multimodal Situational Safety benchmark (MSSBench) to assess the situational safety performance of current MLLMs.
arXiv Detail & Related papers (2024-10-08T16:16:07Z) - SCANS: Mitigating the Exaggerated Safety for LLMs via Safety-Conscious Activation Steering [56.92068213969036]
Safety alignment is indispensable for Large Language Models (LLMs) to defend threats from malicious instructions.<n>Recent researches reveal safety-aligned LLMs prone to reject benign queries due to the exaggerated safety issue.<n>We propose a Safety-Conscious Activation Steering (SCANS) method to mitigate the exaggerated safety concerns.
arXiv Detail & Related papers (2024-08-21T10:01:34Z) - Refuse Whenever You Feel Unsafe: Improving Safety in LLMs via Decoupled Refusal Training [67.30423823744506]
We introduce a novel approach, Decoupled Refusal Training (DeRTa), designed to empower LLMs to refuse compliance to harmful prompts at any response position.<n>DeRTa incorporates two novel components: (1) Maximum Likelihood Estimation with Harmful Response Prefix, which trains models to recognize and avoid unsafe content by appending a segment of harmful response to the beginning of a safe response, and (2) Reinforced Transition Optimization (RTO), which equips models with the ability to transition from potential harm to safety refusal consistently throughout the harmful response sequence.
arXiv Detail & Related papers (2024-07-12T09:36:33Z) - Towards Comprehensive Post Safety Alignment of Large Language Models via Safety Patching [74.62818936088065]
textscSafePatching is a novel framework for comprehensive PSA.<n>textscSafePatching achieves a more comprehensive PSA than baseline methods.<n>textscSafePatching demonstrates its superiority in continual PSA scenarios.
arXiv Detail & Related papers (2024-05-22T16:51:07Z) - CodeAttack: Revealing Safety Generalization Challenges of Large Language Models via Code Completion [117.178835165855]
This paper introduces CodeAttack, a framework that transforms natural language inputs into code inputs.
Our studies reveal a new and universal safety vulnerability of these models against code input.
We find that a larger distribution gap between CodeAttack and natural language leads to weaker safety generalization.
arXiv Detail & Related papers (2024-03-12T17:55:38Z) - The Art of Defending: A Systematic Evaluation and Analysis of LLM
Defense Strategies on Safety and Over-Defensiveness [56.174255970895466]
Large Language Models (LLMs) play an increasingly pivotal role in natural language processing applications.
This paper presents Safety and Over-Defensiveness Evaluation (SODE) benchmark.
arXiv Detail & Related papers (2023-12-30T17:37:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.