Think Twice, Act Once: A Co-Evolution Framework of LLM and RL for Large-Scale Decision Making
- URL: http://arxiv.org/abs/2506.02522v1
- Date: Tue, 03 Jun 2025 06:52:37 GMT
- Title: Think Twice, Act Once: A Co-Evolution Framework of LLM and RL for Large-Scale Decision Making
- Authors: Xu Wan, Wenyue Xu, Chao Yang, Mingyang Sun,
- Abstract summary: Agents Co-Evolution (ACE) is a synergistic framework between Large Language Models (LLMs) and Reinforcement Learning (RL)<n>ACE introduces a dual-role trajectory refinement mechanism where LLMs act as both Policy Actor and Value Critic during RL's training.<n>Through experiments across multiple power grid operation challenges with action spaces exceeding 60K discrete actions, ACE demonstrates superior performance over existing RL methods.
- Score: 9.34311343273189
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in Large Language Models (LLMs) and Reinforcement Learning (RL) have shown significant promise in decision-making tasks. Nevertheless, for large-scale industrial decision problems, both approaches face distinct challenges: LLMs lack real-time long-sequence decision-making capabilities, while RL struggles with sample efficiency in vast action spaces. To bridge this gap, we propose Agents Co-Evolution (ACE), a synergistic framework between LLMs and RL agents for large-scale decision-making scenarios. ACE introduces a dual-role trajectory refinement mechanism where LLMs act as both Policy Actor and Value Critic during RL's training: the Actor refines suboptimal actions via multi-step reasoning and environment validation, while the Critic performs temporal credit assignment through trajectory-level reward shaping. Concurrently, RL agent enhances LLMs' task-specific decision-making with high-quality fine-tuning datasets generated via prioritized experience replay. Through extensive experiments across multiple power grid operation challenges with action spaces exceeding 60K discrete actions, ACE demonstrates superior performance over existing RL methods and LLM-based methods.
Related papers
- RL-PLUS: Countering Capability Boundary Collapse of LLMs in Reinforcement Learning with Hybrid-policy Optimization [86.30192066451256]
We propose RL-PLUS, a novel hybrid-policy optimization approach for Large Language Models (LLMs)<n> RL-PLUS synergizes internal exploitation with external data to achieve stronger reasoning capabilities and surpass the boundaries of base models.<n>We provide both theoretical analysis and extensive experiments to demonstrate the superiority and generalizability of our approach.
arXiv Detail & Related papers (2025-07-31T23:55:29Z) - Agentic Reinforced Policy Optimization [66.96989268893932]
Large-scale reinforcement learning with verifiable rewards (RLVR) has demonstrated its effectiveness in harnessing the potential of large language models (LLMs) for single-turn reasoning tasks.<n>Current RL algorithms inadequately balance the models' intrinsic long-horizon reasoning capabilities and their proficiency in multi-turn tool interactions.<n>We propose Agentic Reinforced Policy Optimization (ARPO), a novel agentic RL algorithm tailored for training multi-turn LLM-based agents.
arXiv Detail & Related papers (2025-07-26T07:53:11Z) - Large Language Model-enhanced Reinforcement Learning for Low-Altitude Economy Networking [71.83640290222928]
Low-Altitude Economic Networking (LAENet) aims to support diverse flying applications below 1,000 meters.<n>Complex decision-making, resource constraints, and environmental uncertainty pose significant challenges to the development of the LAENet.
arXiv Detail & Related papers (2025-05-27T11:25:42Z) - Planning without Search: Refining Frontier LLMs with Offline Goal-Conditioned RL [62.984693936073974]
Large language models (LLMs) excel in tasks like question answering and dialogue.<n>Complex tasks requiring interaction, such as negotiation and persuasion, require additional long-horizon reasoning and planning.<n>We propose a novel approach that uses goal-conditioned value functions to guide the reasoning of LLM agents.
arXiv Detail & Related papers (2025-05-23T16:51:54Z) - LLMs are Greedy Agents: Effects of RL Fine-tuning on Decision-Making Abilities [21.42711537107199]
We study why Large Language Models (LLMs) perform sub-optimally in decision-making scenarios.<n>We propose mitigation of these shortcomings by fine-tuning via Reinforcement Learning (RL) on self-generated CoT rationales.
arXiv Detail & Related papers (2025-04-22T17:57:14Z) - Option Discovery Using LLM-guided Semantic Hierarchical Reinforcement Learning [16.654435148168172]
Large Language Models (LLMs) have shown remarkable promise in reasoning and decision-making.<n>We propose an LLM-guided hierarchical RL framework, termed LDSC, to enhance sample efficiency, generalization, and multi-task adaptability.
arXiv Detail & Related papers (2025-03-24T15:49:56Z) - SWEET-RL: Training Multi-Turn LLM Agents on Collaborative Reasoning Tasks [110.20297293596005]
Large language model (LLM) agents need to perform multi-turn interactions in real-world tasks.<n>Existing multi-turn RL algorithms for optimizing LLM agents fail to perform effective credit assignment over multiple turns while leveraging the generalization capabilities of LLMs.<n>We propose a novel RL algorithm, SWEET-RL, that uses a carefully designed optimization objective to train a critic model with access to additional training-time information.<n>Our experiments demonstrate that SWEET-RL achieves a 6% absolute improvement in success and win rates on ColBench compared to other state-of-the-art multi-turn RL algorithms.
arXiv Detail & Related papers (2025-03-19T17:55:08Z) - Advancing Autonomous VLM Agents via Variational Subgoal-Conditioned Reinforcement Learning [38.68600863590734]
We propose a novel framework, Variational Subgoal-Conditioned Reinforcement Learning (VSC-RL)<n>VSC-RL reformulates the decision-making problem as a variational subgoal-conditioned RL problem with the newly derived optimization objective, Subgoal Evidence Lower BOund.<n>We theoretically and empirically demonstrate that the VSC-RL can efficiently improve the learning efficiency without compromising performance guarantees.
arXiv Detail & Related papers (2025-02-11T20:57:46Z) - Satori: Reinforcement Learning with Chain-of-Action-Thought Enhances LLM Reasoning via Autoregressive Search [57.28671084993782]
Large language models (LLMs) have demonstrated remarkable reasoning capabilities across diverse domains.<n>Recent studies have shown that increasing test-time computation enhances LLMs' reasoning capabilities.<n>We propose a two-stage training paradigm: 1) a small-scale format tuning stage to internalize the COAT reasoning format and 2) a large-scale self-improvement stage leveraging reinforcement learning.
arXiv Detail & Related papers (2025-02-04T17:26:58Z) - Efficient Reinforcement Learning with Large Language Model Priors [18.72288751305885]
Large language models (LLMs) have recently emerged as powerful general-purpose tools.
We propose treating LLMs as prior action distributions and integrating them into RL frameworks.
We show that incorporating LLM-based action priors significantly reduces exploration and complexity optimization.
arXiv Detail & Related papers (2024-10-10T13:54:11Z) - ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL [80.10358123795946]
We develop a framework for building multi-turn RL algorithms for fine-tuning large language models.
Our framework adopts a hierarchical RL approach and runs two RL algorithms in parallel.
Empirically, we find that ArCHer significantly improves efficiency and performance on agent tasks.
arXiv Detail & Related papers (2024-02-29T18:45:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.