CoRe-MMRAG: Cross-Source Knowledge Reconciliation for Multimodal RAG
- URL: http://arxiv.org/abs/2506.02544v2
- Date: Wed, 04 Jun 2025 06:31:54 GMT
- Title: CoRe-MMRAG: Cross-Source Knowledge Reconciliation for Multimodal RAG
- Authors: Yang Tian, Fan Liu, Jingyuan Zhang, Victoria W., Yupeng Hu, Liqiang Nie,
- Abstract summary: Cross-source knowledge textbfReconciliation for Multimodal RAG (CoRe-MMRAG)<n>We propose a novel end-to-end framework that effectively reconciles inconsistencies across knowledge sources.<n>Experiments on KB-VQA benchmarks show that CoRe-MMRAG achieves substantial improvements over baseline methods.
- Score: 53.950029990391066
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal Retrieval-Augmented Generation (MMRAG) has been introduced to enhance Multimodal Large Language Models by incorporating externally retrieved multimodal knowledge, but it introduces two challenges: Parametric-Retrieved Knowledge Inconsistency (PRKI), where discrepancies between parametric and retrieved knowledge create uncertainty in determining reliability, and Visual-Textual Knowledge Inconsistency (VTKI), where misalignment between visual and textual sources disrupts entity representation. To address these challenges, we propose Cross-source knowledge \textbf{Re}conciliation for Multimodal RAG (CoRe-MMRAG), a novel end-to-end framework that effectively reconciles inconsistencies across knowledge sources. CoRe-MMRAG follows a four-stage pipeline: it first generates an internal response from parametric knowledge, then selects the most relevant multimodal evidence via joint similarity assessment, generates an external response, and finally integrates both to produce a reliable answer. Additionally, a specialized training paradigm enhances knowledge source discrimination, multimodal integration, and unified answer generation. Experiments on KB-VQA benchmarks show that CoRe-MMRAG achieves substantial improvements over baseline methods, achieving 5.6% and 9.3% performance gains on InfoSeek and Encyclopedic-VQA, respectively.
Related papers
- mKG-RAG: Multimodal Knowledge Graph-Enhanced RAG for Visual Question Answering [29.5761347590239]
Retrieval-Augmented Generation (RAG) has been proposed to expand internal knowledge of Multimodal Large Language Models (MLLMs)<n>In this paper, we propose a novel multimodal knowledge-augmented generation framework (mKG-RAG) based on multimodal KGs for knowledge-intensive VQA tasks.
arXiv Detail & Related papers (2025-08-07T12:22:50Z) - MultiRAG: A Knowledge-guided Framework for Mitigating Hallucination in Multi-source Retrieval Augmented Generation [5.243680711038957]
MultiRAG is a novel framework designed to mitigate hallucination in multi-source retrieval-augmented generation.<n>It employs multi-source line graphs to efficiently aggregate logical relationships across different knowledge sources.<n>It implements a multi-level confidence calculation mechanism, performing both graph-level and node-level assessments to identify and eliminate unreliable information nodes.
arXiv Detail & Related papers (2025-08-05T15:20:52Z) - Coherent Multimodal Reasoning with Iterative Self-Evaluation for Vision-Language Models [4.064135211977999]
Large language models (LLMs) and vision-language models (LVLMs) struggle with complex, multi-step, cross-modal common sense reasoning tasks.<n>We propose the Coherent Multimodal Reasoning Framework (CMRF), a novel approach that enhances LVLMs' common sense reasoning capabilities.<n>CMRF mimics human problem-solving by decomposing complex queries, generating step-by-step inferences, and self-correcting errors.
arXiv Detail & Related papers (2025-08-04T20:33:58Z) - Hyper-modal Imputation Diffusion Embedding with Dual-Distillation for Federated Multimodal Knowledge Graph Completion [59.54067771781552]
We propose a framework named MMFeD3-HidE for addressing multimodal uncertain unavailability and multimodal client heterogeneity challenges of FedMKGC.<n>We propose a FedMKGC benchmark for a comprehensive evaluation, consisting of a general FedMKGC backbone named MMFedE, datasets with heterogeneous multimodal information, and three groups of constructed baselines.
arXiv Detail & Related papers (2025-06-27T09:32:58Z) - Benchmarking Multimodal Knowledge Conflict for Large Multimodal Models [23.37800506729006]
We propose MMKC-Bench, a benchmark to evaluate factual knowledge conflicts in both context-memory and inter-context scenarios.<n> MMKC-Bench includes 1,573 knowledge instances and 3,381 images across 23 broad types, collected through automated pipelines with human verification.<n>Our findings show that while current LMMs are capable of recognizing knowledge conflicts, they tend to favor internal parametric knowledge over external evidence.
arXiv Detail & Related papers (2025-05-26T04:39:30Z) - MMKB-RAG: A Multi-Modal Knowledge-Based Retrieval-Augmented Generation Framework [15.410873298893817]
We propose Multi-Modal Knowledge-Based Retrieval-Augmented Generation (MMKB-RAG)<n>This framework leverages the inherent knowledge boundaries of models to dynamically generate semantic tags for the retrieval process.<n>Extensive experiments on knowledge-based visual question-answering tasks demonstrate the efficacy of our approach.
arXiv Detail & Related papers (2025-04-14T10:19:47Z) - Knowledge-Aware Iterative Retrieval for Multi-Agent Systems [0.0]
We introduce a novel large language model (LLM)-driven agent framework.<n>It iteratively refines queries and filters contextual evidence by leveraging dynamically evolving knowledge.<n>The proposed system supports both competitive and collaborative sharing of updated context.
arXiv Detail & Related papers (2025-03-17T15:27:02Z) - Benchmarking Retrieval-Augmented Generation in Multi-Modal Contexts [56.7225771305861]
This paper introduces Multi-Modal Retrieval-Augmented Generation (M$2$RAG), a benchmark designed to evaluate the effectiveness of Multi-modal Large Language Models.<n>The benchmark comprises four tasks: image captioning, multi-modal question answering, multi-modal fact verification, and image reranking.<n>To enhance the context utilization capabilities of MLLMs, we also introduce Multi-Modal Retrieval-Augmented Instruction Tuning (MM-RAIT)
arXiv Detail & Related papers (2025-02-24T16:25:25Z) - Towards Trustworthy Retrieval Augmented Generation for Large Language Models: A Survey [92.36487127683053]
Retrieval-Augmented Generation (RAG) is an advanced technique designed to address the challenges of Artificial Intelligence-Generated Content (AIGC)<n>RAG provides reliable and up-to-date external knowledge, reduces hallucinations, and ensures relevant context across a wide range of tasks.<n>Despite RAG's success and potential, recent studies have shown that the RAG paradigm also introduces new risks, including privacy concerns, adversarial attacks, and accountability issues.
arXiv Detail & Related papers (2025-02-08T06:50:47Z) - Progressive Multimodal Reasoning via Active Retrieval [64.74746997923967]
Multi-step multimodal reasoning tasks pose significant challenges for large language models (MLLMs)<n>We propose AR-MCTS, a universal framework designed to progressively improve the reasoning capabilities of MLLMs.<n>We show that AR-MCTS can optimize sampling diversity and accuracy, yielding reliable multimodal reasoning.
arXiv Detail & Related papers (2024-12-19T13:25:39Z) - mR$^2$AG: Multimodal Retrieval-Reflection-Augmented Generation for Knowledge-Based VQA [78.45521005703958]
multimodal Retrieval-Augmented Generation (mRAG) is naturally introduced to provide MLLMs with comprehensive and up-to-date knowledge.
We propose a novel framework called textbfRetrieval-textbfReftextbfAugmented textbfGeneration (mR$2$AG) which achieves adaptive retrieval and useful information localization.
mR$2$AG significantly outperforms state-of-the-art MLLMs on INFOSEEK and Encyclopedic-VQA
arXiv Detail & Related papers (2024-11-22T16:15:50Z) - Synthetic Multimodal Question Generation [60.33494376081317]
Multimodal Retrieval Augmented Generation (MMRAG) is a powerful approach to question-answering over multimodal documents.
We propose SMMQG, a synthetic data generation framework that generates question and answer pairs directly from multimodal documents.
We use SMMQG to generate an MMRAG dataset of 1024 questions over Wikipedia documents and evaluate state-of-the-art models using it.
arXiv Detail & Related papers (2024-07-02T12:57:42Z) - Pistis-RAG: Enhancing Retrieval-Augmented Generation with Human Feedback [41.88662700261036]
RAG systems face limitations when semantic relevance alone does not guarantee improved generation quality.
We propose Pistis-RAG, a new RAG framework designed with a content-centric approach to better align LLMs with human preferences.
arXiv Detail & Related papers (2024-06-21T08:52:11Z) - Merging Generated and Retrieved Knowledge for Open-Domain QA [72.42262579925911]
COMBO is a compatibility-Oriented knowledge Merging for Better Open-domain QA framework.
We show that COMBO outperforms competitive baselines on three out of four tested open-domain QA benchmarks.
arXiv Detail & Related papers (2023-10-22T19:37:06Z) - Dual Semantic Knowledge Composed Multimodal Dialog Systems [114.52730430047589]
We propose a novel multimodal task-oriented dialog system named MDS-S2.
It acquires the context related attribute and relation knowledge from the knowledge base.
We also devise a set of latent query variables to distill the semantic information from the composed response representation.
arXiv Detail & Related papers (2023-05-17T06:33:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.