High Performance Space Debris Tracking in Complex Skylight Backgrounds with a Large-Scale Dataset
- URL: http://arxiv.org/abs/2506.02614v4
- Date: Fri, 25 Jul 2025 01:56:35 GMT
- Title: High Performance Space Debris Tracking in Complex Skylight Backgrounds with a Large-Scale Dataset
- Authors: Guohang Zhuang, Weixi Song, Jinyang Huang, Chenwei Yang, Wanli OuYang, Yan Lu,
- Abstract summary: We propose a deep learning-based Space Debris Tracking Network(SDT-Net) to achieve highly accurate debris tracking.<n>SDT-Net effectively represents the feature of debris, enhancing the efficiency and stability of end-to-end model learning.<n>Our dataset and code will be released soon.
- Score: 48.32788509877459
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the rapid development of space exploration, space debris has attracted more attention due to its potential extreme threat, leading to the need for real-time and accurate debris tracking. However, existing methods are mainly based on traditional signal processing, which cannot effectively process the complex background and dense space debris. In this paper, we propose a deep learning-based Space Debris Tracking Network~(SDT-Net) to achieve highly accurate debris tracking. SDT-Net effectively represents the feature of debris, enhancing the efficiency and stability of end-to-end model learning. To train and evaluate this model effectively, we also produce a large-scale dataset Space Debris Tracking Dataset (SDTD) by a novel observation-based data simulation scheme. SDTD contains 18,040 video sequences with a total of 62,562 frames and covers 250,000 synthetic space debris. Extensive experiments validate the effectiveness of our model and the challenging of our dataset. Furthermore, we test our model on real data from the Antarctic Station, achieving a MOTA score of 73.2%, which demonstrates its strong transferability to real-world scenarios. Our dataset and code will be released soon.
Related papers
- A New Dataset and Performance Benchmark for Real-time Spacecraft Segmentation in Onboard Flight Computers [2.8519379677270997]
We present a new dataset of nearly 64k annotated spacecraft images that was created using real spacecraft models.<n>To mimic camera distortions and noise in real-world image acquisition, we also added different types of noise and distortion to the images.<n>The resulting models, when tested under well-defined hardware and inference time constraints, achieved a Dice score of 0.92, Hausdorff distance of 0.69, and an inference time of about 0.5 second.
arXiv Detail & Related papers (2025-07-14T20:02:40Z) - SpaceTrack-TimeSeries: Time Series Dataset towards Satellite Orbit Analysis [7.471495336112591]
This study collects and curating a representative dataset of maneuvering behavior from Starlink satellites.<n>The dataset integrates Two-Line Element (TLE) catalog data with corresponding high-precision ephemeris data, thereby enabling a more realistic and multidimensional modeling of space object behavior.<n>It provides valuable insights into practical deployment of maneuver detection methods and the evaluation of collision risks in increasingly congested orbital environments.
arXiv Detail & Related papers (2025-06-16T01:57:50Z) - Efficient Self-Supervised Learning for Earth Observation via Dynamic Dataset Curation [67.23953699167274]
Self-supervised learning (SSL) has enabled the development of vision foundation models for Earth Observation (EO)<n>In EO, this challenge is amplified by the redundancy and heavy-tailed distributions common in satellite imagery.<n>We propose a dynamic dataset pruning strategy designed to improve SSL pre-training by maximizing dataset diversity and balance.
arXiv Detail & Related papers (2025-04-09T15:13:26Z) - Structure from Motion-based Motion Estimation and 3D Reconstruction of Unknown Shaped Space Debris [3.037387520023979]
This paper proposes the Structure from Motion-based algorithm to perform unknown shaped space debris motion estimation with limited resources.
The method is validated with the realistic image dataset generated by the microgravity experiment in a 2D air-floating testbed and 3D kinematic simulation.
arXiv Detail & Related papers (2024-08-02T06:18:39Z) - Towards A Foundation Model For Trajectory Intelligence [0.0]
We present the results of training a large trajectory model using real-world user check-in data.
Our approach follows a pre-train and fine-tune paradigm, where a base model is pre-trained via masked trajectory modeling.
Our empirical analysis utilizes a comprehensive dataset of over 2 billion check-ins generated by more than 6 million users.
arXiv Detail & Related papers (2023-11-30T00:34:09Z) - SSIN: Self-Supervised Learning for Rainfall Spatial Interpolation [37.212272184144]
We propose a data-driven self-supervised learning framework for rainfall spatial analysis.
By mining latent spatial patterns from historical data, SpaFormer can learn informative embeddings for raw data and then adaptively model spatial correlations.
Our method outperforms the state-of-the-art solutions in experiments on two real-world raingauge datasets.
arXiv Detail & Related papers (2023-11-27T04:23:47Z) - Layout Sequence Prediction From Noisy Mobile Modality [53.49649231056857]
Trajectory prediction plays a vital role in understanding pedestrian movement for applications such as autonomous driving and robotics.
Current trajectory prediction models depend on long, complete, and accurately observed sequences from visual modalities.
We propose LTrajDiff, a novel approach that treats objects obstructed or out of sight as equally important as those with fully visible trajectories.
arXiv Detail & Related papers (2023-10-09T20:32:49Z) - LargeST: A Benchmark Dataset for Large-Scale Traffic Forecasting [65.71129509623587]
Road traffic forecasting plays a critical role in smart city initiatives and has experienced significant advancements thanks to the power of deep learning.
However, the promising results achieved on current public datasets may not be applicable to practical scenarios.
We introduce the LargeST benchmark dataset, which includes a total of 8,600 sensors in California with a 5-year time coverage.
arXiv Detail & Related papers (2023-06-14T05:48:36Z) - SimuShips -- A High Resolution Simulation Dataset for Ship Detection
with Precise Annotations [0.0]
State-of-the-art obstacle detection algorithms are based on convolutional neural networks (CNNs)
SimuShips is a publicly available simulation-based dataset for maritime environments.
arXiv Detail & Related papers (2022-09-22T07:33:31Z) - PreTraM: Self-Supervised Pre-training via Connecting Trajectory and Map [58.53373202647576]
We propose PreTraM, a self-supervised pre-training scheme for trajectory forecasting.
It consists of two parts: 1) Trajectory-Map Contrastive Learning, where we project trajectories and maps to a shared embedding space with cross-modal contrastive learning, and 2) Map Contrastive Learning, where we enhance map representation with contrastive learning on large quantities of HD-maps.
On top of popular baselines such as AgentFormer and Trajectron++, PreTraM boosts their performance by 5.5% and 6.9% relatively in FDE-10 on the challenging nuScenes dataset.
arXiv Detail & Related papers (2022-04-21T23:01:21Z) - A Spacecraft Dataset for Detection, Segmentation and Parts Recognition [42.27081423489484]
In this paper, we release a dataset for spacecraft detection, instance segmentation and part recognition.
The main contribution of this work is the development of the dataset using images of space stations and satellites.
We also provide evaluations with state-of-the-art methods in object detection and instance segmentation as a benchmark for the dataset.
arXiv Detail & Related papers (2021-06-15T14:36:56Z) - SoDA: Multi-Object Tracking with Soft Data Association [75.39833486073597]
Multi-object tracking (MOT) is a prerequisite for a safe deployment of self-driving cars.
We propose a novel approach to MOT that uses attention to compute track embeddings that encode dependencies between observed objects.
arXiv Detail & Related papers (2020-08-18T03:40:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.