MASTER: Enhancing Large Language Model via Multi-Agent Simulated Teaching
- URL: http://arxiv.org/abs/2506.02689v2
- Date: Wed, 04 Jun 2025 02:34:54 GMT
- Title: MASTER: Enhancing Large Language Model via Multi-Agent Simulated Teaching
- Authors: Liang Yue, Yihong Tang, Kehai Chen, Jie Liu, Min Zhang,
- Abstract summary: MASTER is a novel data augmentation method that enriches original data through interactions among multiple agents with varying cognitive levels.<n>We construct BOOST-QA, a fine-tuning dataset augmented from existing datasets like Orca-Math-200k, ProcQA, and OpenHermes2.5.<n>Experiments show that models fine-tuned with BOOST-QA perform excellently across multiple benchmarks, demonstrating strong multitask generalization.
- Score: 24.350821306196877
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Instruction fine-tuning is crucial in NLP tasks, enhancing pretrained models' instruction-following capabilities and task-specific performance. However, obtaining high-quality fine-tuning data for large models is challenging due to data collection difficulties and high production costs. To address this, we propose MASTER, a novel data augmentation method that enriches original data through interactions among multiple agents with varying cognitive levels. We simulate three pedagogically grounded teaching scenarios, leveraging multi-agent conversations to generate high-quality teacher-student interaction data. Utilizing MASTER, we construct BOOST-QA, a fine-tuning dataset augmented from existing datasets like Orca-Math-200k, ProcQA, and OpenHermes2.5. Experiments show that models fine-tuned with BOOST-QA perform excellently across multiple benchmarks, demonstrating strong multitask generalization. Notably, MASTER significantly improves models' reasoning abilities in complex tasks, providing valuable insights for future research.
Related papers
- LAM SIMULATOR: Advancing Data Generation for Large Action Model Training via Online Exploration and Trajectory Feedback [121.78866929908871]
Large Action Models (LAMs) for AI Agents offer incredible potential but face challenges due to the need for high-quality training data.<n>We present LAM SIMULATOR, a comprehensive framework designed for online exploration of agentic tasks with high-quality feedback.<n>Our framework features a dynamic task query generator, an extensive collection of tools, and an interactive environment where Large Language Model (LLM) Agents can call tools and receive real-time feedback.
arXiv Detail & Related papers (2025-06-02T22:36:02Z) - Language Models as Continuous Self-Evolving Data Engineers [32.67875951851165]
Large Language Models (LLMs) have demonstrated remarkable capabilities on various tasks.<n>Traditional training approaches rely too much on expert-labeled data.<n>We propose a novel paradigm named LANCE that enables LLMs to train themselves by autonomously generating, cleaning, reviewing, and annotating data.
arXiv Detail & Related papers (2024-12-19T18:28:41Z) - MAmmoTH-VL: Eliciting Multimodal Reasoning with Instruction Tuning at Scale [66.73529246309033]
multimodal large language models (MLLMs) have shown significant potential in a broad range of multimodal tasks.<n>Existing instruction-tuning datasets only provide phrase-level answers without any intermediate rationales.<n>We introduce a scalable and cost-effective method to construct a large-scale multimodal instruction-tuning dataset with rich intermediate rationales.
arXiv Detail & Related papers (2024-12-06T18:14:24Z) - Rethinking Data Synthesis: A Teacher Model Training Recipe with Interpretation [12.736045604858738]
Recent advances in large language model (LLM) training have highlighted the need for diverse, high-quality instruction data.<n>We propose a paradigm shift named textbfNOMAD by investigating how to specifically train models for data generation.
arXiv Detail & Related papers (2024-10-27T07:38:39Z) - Unleashing LLM Reasoning Capability via Scalable Question Synthesis from Scratch [54.12139707822201]
We propose ScaleQuest, a novel, scalable, and cost-effective data synthesis method.<n>By generating diverse questions from scratch, we produce a dataset of 1 million problem-solution pairs.<n>Our experiments demonstrate that models trained on our data outperform existing open-source datasets.
arXiv Detail & Related papers (2024-10-24T12:42:04Z) - MMEvol: Empowering Multimodal Large Language Models with Evol-Instruct [148.39859547619156]
We propose MMEvol, a novel multimodal instruction data evolution framework.<n>MMEvol iteratively improves data quality through a refined combination of fine-grained perception, cognitive reasoning, and interaction evolution.<n>Our approach reaches state-of-the-art (SOTA) performance in nine tasks using significantly less data compared to state-of-the-art models.
arXiv Detail & Related papers (2024-09-09T17:44:00Z) - What are the Essential Factors in Crafting Effective Long Context Multi-Hop Instruction Datasets? Insights and Best Practices [91.71951459594074]
Long language models (LLMs) with extended context windows have significantly improved tasks such as information extraction, question answering, and complex planning scenarios.<n>Existing methods typically utilize the Self-Instruct framework to generate instruction tuning data for better long context capability improvement.<n>We propose the Multi-agent Interactive Multi-hop Generation framework, incorporating a Quality Verification Agent, a Single-hop Question Generation Agent, a Multiple Question Sampling Strategy, and a Multi-hop Question Merger Agent.<n>Our findings show that our synthetic high-quality long-context instruction data significantly enhances model performance, even surpassing models trained on larger amounts of human
arXiv Detail & Related papers (2024-09-03T13:30:00Z) - Genixer: Empowering Multimodal Large Language Models as a Powerful Data Generator [63.762209407570715]
Genixer is a comprehensive data generation pipeline consisting of four key steps.
A synthetic VQA-like dataset trained with LLaVA1.5 enhances performance on 10 out of 12 multimodal benchmarks.
MLLMs trained with task-specific datasets can surpass GPT-4V in generating complex instruction tuning data.
arXiv Detail & Related papers (2023-12-11T09:44:41Z) - Diffusion Model is an Effective Planner and Data Synthesizer for
Multi-Task Reinforcement Learning [101.66860222415512]
Multi-Task Diffusion Model (textscMTDiff) is a diffusion-based method that incorporates Transformer backbones and prompt learning for generative planning and data synthesis.
For generative planning, we find textscMTDiff outperforms state-of-the-art algorithms across 50 tasks on Meta-World and 8 maps on Maze2D.
arXiv Detail & Related papers (2023-05-29T05:20:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.