Privacy Leaks by Adversaries: Adversarial Iterations for Membership Inference Attack
- URL: http://arxiv.org/abs/2506.02711v1
- Date: Tue, 03 Jun 2025 10:09:24 GMT
- Title: Privacy Leaks by Adversaries: Adversarial Iterations for Membership Inference Attack
- Authors: Jing Xue, Zhishen Sun, Haishan Ye, Luo Luo, Xiangyu Chang, Ivor Tsang, Guang Dai,
- Abstract summary: We propose IMIA, a novel attack strategy that utilizes the process of generating adversarial samples to infer membership.<n>We conduct experiments across multiple models and datasets, and our results demonstrate that the number of iterations for generating an adversarial sample is a reliable feature for membership inference.
- Score: 21.396030274654073
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Membership inference attack (MIA) has become one of the most widely used and effective methods for evaluating the privacy risks of machine learning models. These attacks aim to determine whether a specific sample is part of the model's training set by analyzing the model's output. While traditional membership inference attacks focus on leveraging the model's posterior output, such as confidence on the target sample, we propose IMIA, a novel attack strategy that utilizes the process of generating adversarial samples to infer membership. We propose to infer the member properties of the target sample using the number of iterations required to generate its adversarial sample. We conduct experiments across multiple models and datasets, and our results demonstrate that the number of iterations for generating an adversarial sample is a reliable feature for membership inference, achieving strong performance both in black-box and white-box attack scenarios. This work provides a new perspective for evaluating model privacy and highlights the potential of adversarial example-based features for privacy leakage assessment.
Related papers
- MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
We propose a novel, yet elegantly simple approach for detecting adversarial samples in Vision-Language Models.
Our method leverages Text-to-Image (T2I) models to generate images based on captions produced by target VLMs.
Empirical evaluations conducted on different datasets validate the efficacy of our approach.
arXiv Detail & Related papers (2024-06-13T15:55:04Z) - SA-Attack: Improving Adversarial Transferability of Vision-Language
Pre-training Models via Self-Augmentation [56.622250514119294]
In contrast to white-box adversarial attacks, transfer attacks are more reflective of real-world scenarios.
We propose a self-augment-based transfer attack method, termed SA-Attack.
arXiv Detail & Related papers (2023-12-08T09:08:50Z) - Assessing Privacy Risks in Language Models: A Case Study on
Summarization Tasks [65.21536453075275]
We focus on the summarization task and investigate the membership inference (MI) attack.
We exploit text similarity and the model's resistance to document modifications as potential MI signals.
We discuss several safeguards for training summarization models to protect against MI attacks and discuss the inherent trade-off between privacy and utility.
arXiv Detail & Related papers (2023-10-20T05:44:39Z) - Robust Transferable Feature Extractors: Learning to Defend Pre-Trained
Networks Against White Box Adversaries [69.53730499849023]
We show that adversarial examples can be successfully transferred to another independently trained model to induce prediction errors.
We propose a deep learning-based pre-processing mechanism, which we refer to as a robust transferable feature extractor (RTFE)
arXiv Detail & Related papers (2022-09-14T21:09:34Z) - Leveraging Adversarial Examples to Quantify Membership Information
Leakage [30.55736840515317]
We develop a novel approach to address the problem of membership inference in pattern recognition models.
We argue that this quantity reflects the likelihood of belonging to the training data.
Our method performs comparable or even outperforms state-of-the-art strategies.
arXiv Detail & Related papers (2022-03-17T19:09:38Z) - MIAShield: Defending Membership Inference Attacks via Preemptive
Exclusion of Members [9.301268830193072]
In membership inference attacks, an adversary observes the predictions of a model to determine whether a sample is part of the model's training data.
We propose MIAShield, a new MIA defense based on preemptive exclusion of member samples instead of masking the presence of a member.
We show that MIAShield effectively mitigates membership inference for a wide range of MIAs, achieves far better privacy-utility trade-off compared with state-of-the-art defenses, and remains resilient against an adaptive adversary.
arXiv Detail & Related papers (2022-03-02T07:53:21Z) - Sampling Attacks: Amplification of Membership Inference Attacks by
Repeated Queries [74.59376038272661]
We introduce sampling attack, a novel membership inference technique that unlike other standard membership adversaries is able to work under severe restriction of no access to scores of the victim model.
We show that a victim model that only publishes the labels is still susceptible to sampling attacks and the adversary can recover up to 100% of its performance.
For defense, we choose differential privacy in the form of gradient perturbation during the training of the victim model as well as output perturbation at prediction time.
arXiv Detail & Related papers (2020-09-01T12:54:54Z) - Membership Leakage in Label-Only Exposures [10.875144776014533]
We propose decision-based membership inference attacks against machine learning models.
In particular, we develop two types of decision-based attacks, namely transfer attack, and boundary attack.
We also present new insights on the success of membership inference based on quantitative and qualitative analysis.
arXiv Detail & Related papers (2020-07-30T15:27:55Z) - Boosting Black-Box Attack with Partially Transferred Conditional
Adversarial Distribution [83.02632136860976]
We study black-box adversarial attacks against deep neural networks (DNNs)
We develop a novel mechanism of adversarial transferability, which is robust to the surrogate biases.
Experiments on benchmark datasets and attacking against real-world API demonstrate the superior attack performance of the proposed method.
arXiv Detail & Related papers (2020-06-15T16:45:27Z) - Systematic Evaluation of Privacy Risks of Machine Learning Models [41.017707772150835]
We show that prior work on membership inference attacks may severely underestimate the privacy risks.
We first propose to benchmark membership inference privacy risks by improving existing non-neural network based inference attacks.
We then introduce a new approach for fine-grained privacy analysis by formulating and deriving a new metric called the privacy risk score.
arXiv Detail & Related papers (2020-03-24T00:53:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.