Safely Learning Controlled Stochastic Dynamics
- URL: http://arxiv.org/abs/2506.02754v1
- Date: Tue, 03 Jun 2025 11:17:07 GMT
- Title: Safely Learning Controlled Stochastic Dynamics
- Authors: Luc Brogat-Motte, Alessandro Rudi, Riccardo Bonalli,
- Abstract summary: We introduce a method that ensures safe exploration and efficient estimation of system dynamics.<n>After training, the learned model enables predictions of the system's dynamics and permits safety verification of any given control.<n>We provide theoretical guarantees for safety and derive adaptive learning rates that improve with increasing Sobolev regularity of the true dynamics.
- Score: 61.82896036131116
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We address the problem of safely learning controlled stochastic dynamics from discrete-time trajectory observations, ensuring system trajectories remain within predefined safe regions during both training and deployment. Safety-critical constraints of this kind are crucial in applications such as autonomous robotics, finance, and biomedicine. We introduce a method that ensures safe exploration and efficient estimation of system dynamics by iteratively expanding an initial known safe control set using kernel-based confidence bounds. After training, the learned model enables predictions of the system's dynamics and permits safety verification of any given control. Our approach requires only mild smoothness assumptions and access to an initial safe control set, enabling broad applicability to complex real-world systems. We provide theoretical guarantees for safety and derive adaptive learning rates that improve with increasing Sobolev regularity of the true dynamics. Experimental evaluations demonstrate the practical effectiveness of our method in terms of safety, estimation accuracy, and computational efficiency.
Related papers
- Designing Control Barrier Function via Probabilistic Enumeration for Safe Reinforcement Learning Navigation [55.02966123945644]
We propose a hierarchical control framework leveraging neural network verification techniques to design control barrier functions (CBFs) and policy correction mechanisms.<n>Our approach relies on probabilistic enumeration to identify unsafe regions of operation, which are then used to construct a safe CBF-based control layer.<n>These experiments demonstrate the ability of the proposed solution to correct unsafe actions while preserving efficient navigation behavior.
arXiv Detail & Related papers (2025-04-30T13:47:25Z) - Statistical Safety and Robustness Guarantees for Feedback Motion
Planning of Unknown Underactuated Stochastic Systems [1.0323063834827415]
We propose a sampling-based planner that uses the mean dynamics model and simultaneously bounds the closed-loop tracking error via a learned disturbance bound.
We validate that our guarantees translate to empirical safety in simulation on a 10D quadrotor, and in the real world on a physical CrazyFlie quadrotor and Clearpath Jackal robot.
arXiv Detail & Related papers (2022-12-13T19:38:39Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
We introduce a model-uncertainty-aware reformulation of CBF-based safety-critical controllers.
We then present the pointwise feasibility conditions of the resulting safety controller.
We use these conditions to devise an event-triggered online data collection strategy.
arXiv Detail & Related papers (2022-08-23T05:02:09Z) - Sample-efficient Safe Learning for Online Nonlinear Control with Control
Barrier Functions [35.9713619595494]
Reinforcement Learning and continuous nonlinear control have been successfully deployed in multiple domains of complicated sequential decision-making tasks.
Given the exploration nature of the learning process and the presence of model uncertainty, it is challenging to apply them to safety-critical control tasks.
We propose a emphprovably efficient episodic safe learning framework for online control tasks.
arXiv Detail & Related papers (2022-07-29T00:54:35Z) - Safe Reinforcement Learning via Confidence-Based Filters [78.39359694273575]
We develop a control-theoretic approach for certifying state safety constraints for nominal policies learned via standard reinforcement learning techniques.
We provide formal safety guarantees, and empirically demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2022-07-04T11:43:23Z) - ProBF: Learning Probabilistic Safety Certificates with Barrier Functions [31.203344483485843]
The control barrier function is a useful tool to guarantee safety if we have access to the ground-truth system dynamics.
In practice, we have inaccurate knowledge of the system dynamics, which can lead to unsafe behaviors.
We show the efficacy of this method through experiments on Segway and Quadrotor simulations.
arXiv Detail & Related papers (2021-12-22T20:18:18Z) - Closing the Closed-Loop Distribution Shift in Safe Imitation Learning [80.05727171757454]
We treat safe optimization-based control strategies as experts in an imitation learning problem.
We train a learned policy that can be cheaply evaluated at run-time and that provably satisfies the same safety guarantees as the expert.
arXiv Detail & Related papers (2021-02-18T05:11:41Z) - Neural Lyapunov Redesign [36.2939747271983]
Learning controllers must guarantee some notion of safety to ensure that it does not harm either the agent or the environment.
Lyapunov functions are effective tools to assess stability in nonlinear dynamical systems.
We propose a two-player collaborative algorithm that alternates between estimating a Lyapunov function and deriving a controller that gradually enlarges the stability region.
arXiv Detail & Related papers (2020-06-06T19:22:20Z) - Chance-Constrained Trajectory Optimization for Safe Exploration and
Learning of Nonlinear Systems [81.7983463275447]
Learning-based control algorithms require data collection with abundant supervision for training.
We present a new approach for optimal motion planning with safe exploration that integrates chance-constrained optimal control with dynamics learning and feedback control.
arXiv Detail & Related papers (2020-05-09T05:57:43Z) - Safe reinforcement learning for probabilistic reachability and safety
specifications: A Lyapunov-based approach [2.741266294612776]
We propose a model-free safety specification method that learns the maximal probability of safe operation.
Our approach constructs a Lyapunov function with respect to a safe policy to restrain each policy improvement stage.
It yields a sequence of safe policies that determine the range of safe operation, called the safe set.
arXiv Detail & Related papers (2020-02-24T09:20:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.