METok: Multi-Stage Event-based Token Compression for Efficient Long Video Understanding
- URL: http://arxiv.org/abs/2506.02850v1
- Date: Tue, 03 Jun 2025 13:19:41 GMT
- Title: METok: Multi-Stage Event-based Token Compression for Efficient Long Video Understanding
- Authors: Mengyue Wang, Shuo Chen, Kristian Kersting, Volker Tresp, Yunpu Ma,
- Abstract summary: We propose METok, a training-free, Multi-stage Event-based Token compression framework.<n>We show METok achieves an optimal trade-off between efficiency and accuracy by dynamically selecting informative visual tokens.<n>For instance, equipping LongVA-7B with METok realizes an 80.6% FLOPs reduction and 93.5% KV Cache memory savings.
- Score: 41.60539587719931
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in Video Large Language Models (VLLMs) have significantly enhanced their ability to understand video content. Nonetheless, processing long videos remains challenging due to high computational demands and the redundancy present in the visual data. In this work, we propose METok, a training-free, Multi-stage Event-based Token compression framework designed to accelerate VLLMs' inference while preserving accuracy. METok progressively eliminates redundant visual tokens across three critical stages: (1) event-aware compression during vision encoding, (2) hierarchical token pruning in the prefilling stage based on semantic alignment and event importance, and (3) a decoding-stage KV Cache optimization that further reduces memory consumption. Our experiments on diverse video benchmarks demonstrate that METok achieves an optimal trade-off between efficiency and accuracy by dynamically selecting informative visual tokens. For instance, equipping LongVA-7B with METok realizes an 80.6% FLOPs reduction and 93.5% KV Cache memory savings, all while maintaining comparable or even superior accuracy.
Related papers
- An LMM for Efficient Video Understanding via Reinforced Compression of Video Cubes [85.00111442236499]
This paper presents textbfQuicksviewer, an LMM with new perceiving paradigm that partitions a video of nontemporal density into varying cubes using Gumbel Softmax.<n>We train the model from a language backbone through three progressive stages, each incorporating lengthy videos on average of 420s/1fps thanks to the perceiving efficiency.<n>With only 0.8M total video-text samples for training, our model outperforms the direct baseline employing a fixed partitioning strategy by a maximum of 8.72 in accuracy.
arXiv Detail & Related papers (2025-04-21T17:57:21Z) - Neural Discrete Token Representation Learning for Extreme Token Reduction in Video Large Language Models [50.214593234229255]
We introduce the novel task of Extreme Short Token Reduction, which aims to represent entire videos using a minimal set of discrete tokens.<n>On the Extreme Short Token Reduction task, our VQToken compresses sequences to just 0.07 percent of their original length while incurring only a 0.66 percent drop in accuracy on the NextQA-MC benchmark.
arXiv Detail & Related papers (2025-03-21T09:46:31Z) - AdaReTaKe: Adaptive Redundancy Reduction to Perceive Longer for Video-language Understanding [55.320254859515714]
Multimodal Large Language Models (MLLMs) have revolutionized video understanding, yet are still limited by context length when processing long videos.<n>We propose AdaReTaKe, a training-free method that flexibly reduces visual redundancy by allocating compression ratios among time and layers with theoretical guarantees.<n>Experiments on VideoMME, MLVU, LongVideoBench, and LVBench datasets demonstrate that AdaReTaKe outperforms existing methods by 2.3% and 2.8% for 7B and 72B models, respectively.
arXiv Detail & Related papers (2025-03-16T16:14:52Z) - HiTVideo: Hierarchical Tokenizers for Enhancing Text-to-Video Generation with Autoregressive Large Language Models [63.65066762436074]
HiTVideo aims to address the potential limitations of existing video tokenizers in text-to-video generation tasks.<n>It utilizes a 3D causal VAE with a multi-layer discrete token framework, encoding video content into hierarchically structured codebooks.
arXiv Detail & Related papers (2025-03-14T15:36:39Z) - VideoScan: Enabling Efficient Streaming Video Understanding via Frame-level Semantic Carriers [23.541896057977745]
VideoScan is an efficient vision-language model (VLM) inference framework for real-time video interaction.<n>VideoScan employs a single semantic carrier token to represent each frame.
arXiv Detail & Related papers (2025-03-12T13:30:40Z) - PVC: Progressive Visual Token Compression for Unified Image and Video Processing in Large Vision-Language Models [64.9366388601049]
Visual token compression is leveraged to reduce the considerable token length of visual inputs.<n>We introduce a unified token compression strategy called Progressive Visual Token Compression.<n>Our model achieves state-of-the-art performance across various video understanding benchmarks.
arXiv Detail & Related papers (2024-12-12T18:59:40Z) - DyCoke: Dynamic Compression of Tokens for Fast Video Large Language Models [28.379533608574814]
We present DyCoke, a training-free token compression method to optimize token representation and accelerate video large language models.<n>DyCoke incorporates a plug-and-play temporal compression module to minimize temporal redundancy by merging redundant tokens across frames.<n>It ensures high-quality inference by dynamically retaining the critical tokens at each decoding step.
arXiv Detail & Related papers (2024-11-22T15:55:19Z) - VL-Cache: Sparsity and Modality-Aware KV Cache Compression for Vision-Language Model Inference Acceleration [7.463830743649754]
Vision-Language Models (VLMs) have demonstrated impressive performance across a versatile set of tasks.
Key-Value (KV) cache encodes long visual contexts, such as images or videos.
Existing KV cache compression methods are effective for Large Language Models (LLMs)
We propose a novel KV cache compression recipe tailored for accelerating VLM inference.
arXiv Detail & Related papers (2024-10-29T20:04:34Z) - Video-XL: Extra-Long Vision Language Model for Hour-Scale Video Understanding [25.61734041983714]
Video-XL is a novel approach that leverages MLLMs' inherent key-value sparsification capacity to condense the visual input.<n>Video-XL's effectiveness is verified from three aspects. First, it achieves a superior long-video understanding capability, outperforming state-of-the-art models of comparable sizes.
arXiv Detail & Related papers (2024-09-22T15:13:31Z) - VideoLLM-MoD: Efficient Video-Language Streaming with Mixture-of-Depths Vision Computation [66.00245701441547]
We introduce a novel approach to reduce vision compute by leveraging redundant vision tokens "skipping layers" rather than decreasing the number of vision tokens.
Our method, VideoLLM-MoD, is inspired by mixture-of-depths LLMs and addresses the challenge of numerous vision tokens in long-term or streaming video.
arXiv Detail & Related papers (2024-08-29T17:21:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.