Sparse-vDiT: Unleashing the Power of Sparse Attention to Accelerate Video Diffusion Transformers
- URL: http://arxiv.org/abs/2506.03065v1
- Date: Tue, 03 Jun 2025 16:42:37 GMT
- Title: Sparse-vDiT: Unleashing the Power of Sparse Attention to Accelerate Video Diffusion Transformers
- Authors: Pengtao Chen, Xianfang Zeng, Maosen Zhao, Peng Ye, Mingzhu Shen, Wei Cheng, Gang Yu, Tao Chen,
- Abstract summary: We propose Sparse-vDiT, a sparsity acceleration framework for Video Diffusion Transformer (vDiT)<n>We show that Sparse-vDiT achieves 2.09$times$, 2.38$times$, and 1.67$times$ theoretical FLOP reduction, and actual inference speedups of 1.76$times$, 1.85$times$, and 1.58$times$, respectively.<n>Our work demonstrates that latent structural sparsity in vDiTs can be systematically exploited for long video synthesis.
- Score: 24.105473321347894
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While Diffusion Transformers (DiTs) have achieved breakthroughs in video generation, this long sequence generation task remains constrained by the quadratic complexity of attention mechanisms, resulting in significant inference latency. Through detailed analysis of attention maps in Video Diffusion Transformer (vDiT), we identify three recurring sparsity patterns: diagonal, multi-diagonal, and vertical-stripe structures. And even 3-6\% attention heads can be skipped. Crucially, these patterns exhibit strong layer-depth and head-position correlations but show limited dependence on the input content. Leveraging these findings, we propose Sparse-vDiT, a sparsity acceleration framework for vDiT comprising: 1) Pattern-optimized sparse kernels that replace dense attention with computationally efficient implementations for each identified sparsity pattern. 2) An offline sparse diffusion search algorithm that selects the optimal sparse computation strategy per layer and head via hardware-aware cost modeling. After determining the optimal configuration, we fuse heads within the same layer that share the same attention strategy, enhancing inference efficiency. Integrated into state-of-the-art vDiT models (CogVideoX1.5, HunyuanVideo, and Wan2.1), Sparse-vDiT achieves 2.09$\times$, 2.38$\times$, and 1.67$\times$ theoretical FLOP reduction, and actual inference speedups of 1.76$\times$, 1.85$\times$, and 1.58$\times$, respectively, while maintaining high visual fidelity, with PSNR values reaching 24.13, 27.09, and 22.59. Our work demonstrates that latent structural sparsity in vDiTs can be systematically exploited for long video synthesis.
Related papers
- RainFusion: Adaptive Video Generation Acceleration via Multi-Dimensional Visual Redundancy [10.53687668536011]
RainFusion exploits inherent sparsity nature in visual data to accelerate attention computation while preserving video quality.<n>Our proposed bf RainFusion is a plug-and-play method that can be seamlessly integrated into state-of-the-art 3D-attention video generation models.
arXiv Detail & Related papers (2025-05-27T11:15:02Z) - VORTA: Efficient Video Diffusion via Routing Sparse Attention [45.269274789183974]
Video Diffusion Transformers (VDiTs) have achieved remarkable progress in high-quality video generation, but remain computationally expensive.<n>We propose VORTA, an acceleration framework with two novel components.<n>It achieves a $1.76times$ end-to-end speedup without quality loss on VBench.
arXiv Detail & Related papers (2025-05-24T17:46:47Z) - Turbo2K: Towards Ultra-Efficient and High-Quality 2K Video Synthesis [50.77548592888096]
Demand for 2K video synthesis is rising with increasing consumer expectations for ultra-clear visuals.<n>Turbo2K is an efficient framework for generating detail-rich 2K videos.
arXiv Detail & Related papers (2025-04-20T03:30:59Z) - DyDiT++: Dynamic Diffusion Transformers for Efficient Visual Generation [66.86241453156225]
Diffusion Transformer (DiT) has demonstrated superior performance but suffers from substantial computational costs.<n>We propose textbfDynamic textbfDiffusion textbfTransformer (DyDiT)<n>DyDiT adjusts its computation along both emphtimestep and emphspatial dimensions.
arXiv Detail & Related papers (2025-04-09T11:48:37Z) - Training-free and Adaptive Sparse Attention for Efficient Long Video Generation [31.615453637053793]
generating high-fidelity long videos with Diffusion Transformers (DiTs) is often hindered by significant latency.<n>We propose AdaSpa, the first Dynamic Pattern and Online Precise Search sparse attention method.<n>AdaSpa is implemented as an adaptive, plug-and-play solution and can be integrated seamlessly with existing DiTs.
arXiv Detail & Related papers (2025-02-28T14:11:20Z) - DSV: Exploiting Dynamic Sparsity to Accelerate Large-Scale Video DiT Training [85.04885553561164]
Diffusion Transformers (DiTs) have shown remarkable performance in generating high-quality videos.<n>DiTs can consume up to 95% of processing time and demand specialized context parallelism.<n>This paper introduces DSV to accelerate video DiT training by leveraging the dynamic attention sparsity we empirically observe.
arXiv Detail & Related papers (2025-02-11T14:39:59Z) - Efficient-vDiT: Efficient Video Diffusion Transformers With Attention Tile [28.913893318345384]
Diffusion Transformers (DiTs) with 3D full attention suffer from expensive inference due to the complexity of attention computation and numerous sampling steps.<n>This paper addresses the inefficiency issue from two aspects: 1) Prune the 3D full attention based on the redundancy within video data, and 2) Shorten the sampling process by adopting existing multi-step consistency distillation.
arXiv Detail & Related papers (2025-02-10T05:00:56Z) - Sparse VideoGen: Accelerating Video Diffusion Transformers with Spatial-Temporal Sparsity [59.80405282381126]
Diffusion Transformers (DiTs) dominate video generation but their high computational cost severely limits real-world applicability.<n>We propose a training-free framework termed Sparse VideoGen (SVG) that leverages the inherent sparsity in 3D Full Attention to boost inference efficiency.<n>SVG achieves up to 2.28x and 2.33x end-to-end speedup on CogVideoX-v1.5 and HunyuanVideo, respectively, while preserving generation quality.
arXiv Detail & Related papers (2025-02-03T19:29:16Z) - Towards Stabilized and Efficient Diffusion Transformers through Long-Skip-Connections with Spectral Constraints [51.83081671798784]
Diffusion Transformers (DiT) have emerged as a powerful architecture for image and video generation, offering superior quality and scalability.<n>DiT's practical application suffers from inherent dynamic feature instability, leading to error amplification during cached inference.<n>We propose Skip-DiT, an image and video generative DiT variant enhanced with Long-Skip-Connections (LSCs) - the key efficiency component in U-Nets.
arXiv Detail & Related papers (2024-11-26T17:28:10Z) - Dynamic Diffusion Transformer [67.13876021157887]
Diffusion Transformer (DiT) has demonstrated superior performance but suffers from substantial computational costs.
We propose Dynamic Diffusion Transformer (DyDiT), an architecture that dynamically adjusts its computation along both timestep and spatial dimensions during generation.
With 3% additional fine-tuning, our method reduces the FLOPs of DiT-XL by 51%, accelerates generation by 1.73, and achieves a competitive FID score of 2.07 on ImageNet.
arXiv Detail & Related papers (2024-10-04T14:14:28Z) - Global Vision Transformer Pruning with Hessian-Aware Saliency [93.33895899995224]
This work challenges the common design philosophy of the Vision Transformer (ViT) model with uniform dimension across all the stacked blocks in a model stage.
We derive a novel Hessian-based structural pruning criteria comparable across all layers and structures, with latency-aware regularization for direct latency reduction.
Performing iterative pruning on the DeiT-Base model leads to a new architecture family called NViT (Novel ViT), with a novel parameter that utilizes parameters more efficiently.
arXiv Detail & Related papers (2021-10-10T18:04:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.