Beyond Text Compression: Evaluating Tokenizers Across Scales
- URL: http://arxiv.org/abs/2506.03101v1
- Date: Tue, 03 Jun 2025 17:35:56 GMT
- Title: Beyond Text Compression: Evaluating Tokenizers Across Scales
- Authors: Jonas F. Lotz, António V. Lopes, Stephan Peitz, Hendra Setiawan, Leonardo Emili,
- Abstract summary: We show that tokenizer choice has negligible effects on tasks in English but results in consistent performance differences in multilingual settings.<n>We propose new intrinsic tokenizer metrics inspired by Zipf's law that correlate more strongly with downstream performance than text compression.
- Score: 4.0253589606301174
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The choice of tokenizer can profoundly impact language model performance, yet accessible and reliable evaluations of tokenizer quality remain an open challenge. Inspired by scaling consistency, we show that smaller models can accurately predict significant differences in tokenizer impact on larger models at a fraction of the compute cost. By systematically evaluating both English-centric and multilingual tokenizers, we find that tokenizer choice has negligible effects on tasks in English but results in consistent performance differences in multilingual settings. We propose new intrinsic tokenizer metrics inspired by Zipf's law that correlate more strongly with downstream performance than text compression when modeling unseen languages. By combining several metrics to capture multiple aspects of tokenizer behavior, we develop a reliable framework for intrinsic tokenizer evaluations. Our work offers a more efficient path to informed tokenizer selection in future language model development.
Related papers
- Conditional Unigram Tokenization with Parallel Data [1.8416014644193066]
We introduce conditional unigram tokenization, a novel approach that extends unigram tokenization by conditioning target token probabilities on source-language tokens from parallel data.<n>We evaluate our tokenizer on four language pairs across different families and resource levels.
arXiv Detail & Related papers (2025-07-10T14:53:59Z) - Broken Tokens? Your Language Model can Secretly Handle Non-Canonical Tokenizations [83.93566096400723]
We find that instruction-tuned models retain up to 93.4% of their original performance when given a randomly sampled tokenization.<n>Character-level segmentation improves string manipulation and code understanding tasks by up to +14%.<n>Right-aligned digit grouping enhances large-number arithmetic by +33%.
arXiv Detail & Related papers (2025-06-23T18:02:26Z) - Sketch-of-Thought: Efficient LLM Reasoning with Adaptive Cognitive-Inspired Sketching [60.04718679054704]
Chain-of-Thought prompting elicits step-by-step problem solving, but often at the cost of excessive verbosity in intermediate outputs.<n>We propose Sketch-of-Thought (SoT), a prompting framework that integrates cognitively inspired reasoning paradigms with linguistic constraints.<n>SoT achieves token reductions of up to 78% with minimal accuracy loss across 15 reasoning datasets.
arXiv Detail & Related papers (2025-03-07T06:57:17Z) - Tokenization is Sensitive to Language Variation [14.568179478275255]
Tokenizers split texts into smaller units and might behave differently for less common linguistic forms.<n>This might affect downstream LLM performance differently on two types of tasks.<n>We investigate how key algorithmic design choices impact downstream models' performances.
arXiv Detail & Related papers (2025-02-21T09:58:54Z) - When Every Token Counts: Optimal Segmentation for Low-Resource Language Models [0.0]
We show that an optimal Byte-Pair (BPE) configuration significantly reduces token count compared to greedy segmentation.<n>Our findings suggest that compression-optimized tokenization strategies could provide substantial advantages for multilingual and low-resource language applications.
arXiv Detail & Related papers (2024-12-09T19:11:54Z) - STAB: Speech Tokenizer Assessment Benchmark [57.45234921100835]
Representing speech as discrete tokens provides a framework for transforming speech into a format that closely resembles text.
We present STAB (Speech Tokenizer Assessment Benchmark), a systematic evaluation framework designed to assess speech tokenizers comprehensively.
We evaluate the STAB metrics and correlate this with downstream task performance across a range of speech tasks and tokenizer choices.
arXiv Detail & Related papers (2024-09-04T02:20:59Z) - Unpacking Tokenization: Evaluating Text Compression and its Correlation with Model Performance [34.641079276516926]
We argue for the theoretical importance of compression, that can be viewed as 0-gram language modeling.
We demonstrate the empirical importance of compression for downstream success of pre-trained language models.
We show that there is a correlation between tokenizers' compression and models' downstream performance.
arXiv Detail & Related papers (2024-03-10T17:02:53Z) - On the Analysis of Cross-Lingual Prompt Tuning for Decoder-based
Multilingual Model [49.81429697921861]
We study the interaction between parameter-efficient fine-tuning (PEFT) and cross-lingual tasks in multilingual autoregressive models.
We show that prompt tuning is more effective in enhancing the performance of low-resource languages than fine-tuning.
arXiv Detail & Related papers (2023-11-14T00:43:33Z) - Language Model Tokenizers Introduce Unfairness Between Languages [98.92630681729518]
We show how disparity in the treatment of different languages arises at the tokenization stage, well before a model is even invoked.
Character-level and byte-level models also exhibit over 4 times the difference in the encoding length for some language pairs.
We make the case that we should train future language models using multilingually fair subword tokenizers.
arXiv Detail & Related papers (2023-05-17T14:17:57Z) - A Multi-dimensional Evaluation of Tokenizer-free Multilingual Pretrained
Models [87.7086269902562]
We show that subword-based models might still be the most practical choice in many settings.
We encourage future work in tokenizer-free methods to consider these factors when designing and evaluating new models.
arXiv Detail & Related papers (2022-10-13T15:47:09Z) - How Robust is Neural Machine Translation to Language Imbalance in
Multilingual Tokenizer Training? [86.48323488619629]
We analyze how translation performance changes as the data ratios among languages vary in the tokenizer training corpus.
We find that while relatively better performance is often observed when languages are more equally sampled, the downstream performance is more robust to language imbalance than we usually expected.
arXiv Detail & Related papers (2022-04-29T17:50:36Z) - Impact of Tokenization on Language Models: An Analysis for Turkish [2.4660652494309936]
We train tokenizers and pretrain medium-sized language models using RoBERTa pretraining procedure on the Turkish split of the OSCAR corpus.
Our experiments, supported by statistical tests, reveal that Morphological-level tokenizer has challenging performance with de facto tokenizers.
We find that increasing the vocabulary size improves the performance of Morphological and Word-level tokenizers more than that of de facto tokenizers.
arXiv Detail & Related papers (2022-04-19T12:01:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.