Controllable Human-centric Keyframe Interpolation with Generative Prior
- URL: http://arxiv.org/abs/2506.03119v1
- Date: Tue, 03 Jun 2025 17:50:05 GMT
- Title: Controllable Human-centric Keyframe Interpolation with Generative Prior
- Authors: Zujin Guo, Size Wu, Zhongang Cai, Wei Li, Chen Change Loy,
- Abstract summary: We introduce PoseFuse3D Keyframe Interpolator (PoseFuse3D-KI), a novel framework that integrates 3D human guidance signals into the diffusion process.<n>We show that PoseFuse3D-KI consistently outperforms state-of-the-art baselines on CHKI-Video.
- Score: 55.16558476905587
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Existing interpolation methods use pre-trained video diffusion priors to generate intermediate frames between sparsely sampled keyframes. In the absence of 3D geometric guidance, these methods struggle to produce plausible results for complex, articulated human motions and offer limited control over the synthesized dynamics. In this paper, we introduce PoseFuse3D Keyframe Interpolator (PoseFuse3D-KI), a novel framework that integrates 3D human guidance signals into the diffusion process for Controllable Human-centric Keyframe Interpolation (CHKI). To provide rich spatial and structural cues for interpolation, our PoseFuse3D, a 3D-informed control model, features a novel SMPL-X encoder that transforms 3D geometry and shape into the 2D latent conditioning space, alongside a fusion network that integrates these 3D cues with 2D pose embeddings. For evaluation, we build CHKI-Video, a new dataset annotated with both 2D poses and 3D SMPL-X parameters. We show that PoseFuse3D-KI consistently outperforms state-of-the-art baselines on CHKI-Video, achieving a 9% improvement in PSNR and a 38% reduction in LPIPS. Comprehensive ablations demonstrate that our PoseFuse3D model improves interpolation fidelity.
Related papers
- I2V3D: Controllable image-to-video generation with 3D guidance [42.23117201457898]
IV23D is a framework for animating static images into dynamic videos with precise 3D control.<n>Our approach combines the precision of a computer graphics pipeline with advanced generative models.
arXiv Detail & Related papers (2025-03-12T18:26:34Z) - 3D-Consistent Human Avatars with Sparse Inputs via Gaussian Splatting and Contrastive Learning [19.763523500564542]
CHASE is a novel framework that achieves dense-input-level performance using only sparse inputs.
We introduce a Dynamic Avatar Adjustment (DAA) module, which refines deformed Gaussians by leveraging similar poses from the training set.
While designed for sparse inputs, CHASE surpasses state-of-the-art methods across both full and sparse settings on ZJU-MoCap and H36M datasets.
arXiv Detail & Related papers (2024-08-19T02:46:23Z) - UPose3D: Uncertainty-Aware 3D Human Pose Estimation with Cross-View and Temporal Cues [55.69339788566899]
UPose3D is a novel approach for multi-view 3D human pose estimation.
It improves robustness and flexibility without requiring direct 3D annotations.
arXiv Detail & Related papers (2024-04-23T00:18:00Z) - JOTR: 3D Joint Contrastive Learning with Transformers for Occluded Human
Mesh Recovery [84.67823511418334]
This paper presents 3D JOint contrastive learning with TRansformers framework for handling occluded 3D human mesh recovery.
Our method includes an encoder-decoder transformer architecture to fuse 2D and 3D representations for achieving 2D$&$3D aligned results.
arXiv Detail & Related papers (2023-07-31T02:58:58Z) - Joint-MAE: 2D-3D Joint Masked Autoencoders for 3D Point Cloud
Pre-training [65.75399500494343]
Masked Autoencoders (MAE) have shown promising performance in self-supervised learning for 2D and 3D computer vision.
We propose Joint-MAE, a 2D-3D joint MAE framework for self-supervised 3D point cloud pre-training.
arXiv Detail & Related papers (2023-02-27T17:56:18Z) - MixSTE: Seq2seq Mixed Spatio-Temporal Encoder for 3D Human Pose
Estimation in Video [75.23812405203778]
Recent solutions have been introduced to estimate 3D human pose from 2D keypoint sequence by considering body joints among all frames globally to learn-temporal correlation.
We propose Mix Mix, which has temporal transformer block to separately model the temporal motion of each joint and a transformer block inter-joint spatial correlation.
In addition, the network output is extended from the central frame to entire frames of input video, improving the coherence between the input and output benchmarks.
arXiv Detail & Related papers (2022-03-02T04:20:59Z) - Cylinder3D: An Effective 3D Framework for Driving-scene LiDAR Semantic
Segmentation [87.54570024320354]
State-of-the-art methods for large-scale driving-scene LiDAR semantic segmentation often project and process the point clouds in the 2D space.
A straightforward solution to tackle the issue of 3D-to-2D projection is to keep the 3D representation and process the points in the 3D space.
We develop a 3D cylinder partition and a 3D cylinder convolution based framework, termed as Cylinder3D, which exploits the 3D topology relations and structures of driving-scene point clouds.
arXiv Detail & Related papers (2020-08-04T13:56:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.